

Introduction

Computer-game development is immensely

popular with undergraduate computer-science and

computer-engineering students. More importantly,

the design and development of computer-games is

an excellent pedagogical opportunity: developing

games integrates a great number of the subjects

students learn throughout their undergraduate

experience[1]. This integration of topics, coupled

with student driven motivation to learn, is an

important step for students allowing them to

utilize tools from programming and graphics to

calculus and physics; from data structures and

algorithms to computer hardware to name just a

few subjects[2]. From a teaching perspective,

computer-game development is great fun to teach

as the students are highly motivated and the

subject matter, while very challenging, is fun!

At Grove City College (GCC), we have

developed a comprehensive three-semester

sequence in computer-game development. The

sequence is designed to take students from

interactive fiction and 2D arcade-style games to

sophisticated console game development. The first

two courses in our three course sequence stress

computer gaming fundamentals in 2D (the first

term) and then 3D (the second term). In these

courses, we cover a wide range of topics from

software architectures for game design to

fundamentals of game development including

algorithms, data structures, graphics (including

Microsoft XNA) and techniques for good game

play.

In the third term, our students gain experience

with console gaming using the Microsoft Xbox

360. Console game development is challenging, as

the students not only must use sophisticated game

development techniques learned in the previous

two courses, but they must apply their knowledge

of networking. In the paper, we describe our

curriculum, as well as the pedagogical techniques

we use. In addition, we discuss many of the issues

in delivering the curriculum, particularly at a small

college.

Related programs

Overcoming a reputation synonymous with

wasting time, game programming is being

incorporated into academic programs creating new

classes and opportunities for students to work on

very sophisticated and technically relevant

applications during their undergraduate education.

Programs, like that of North Texas, incorporate

game design with a focus on getting students into

the gaming industry and have had reasonable

success[3].

In contrast, many programs are aimed at simply

increasing student motivation to explore current

hot technologies and programming techniques on

a large project and to work in multi-disciplinary

teams. For example, the College of New Jersey

offers a design course where students from a

variety of disciplines, including the arts, work on a

game. Other programs range from minor

incorporation of gaming into programming

assignments and capstone projects to the kind of

full scale degree programs offered by Full Sail,

Digipen, and The Guildhall at SMU. Still others

have programs that focus on the use of gaming as

an aid or driver for learning concepts using 3D

environments in novel ways like at the University

of North Carolina Charlotte4 or the

M.U.P.P.E.T.S project at RIT.

A number of universities have research programs

in gaming and related technologies. Examples of

these schools include: The University of

Michigan, Michigan State University, University

of Southern California and Carnegie Mellon. The

last two schools have academic units for their

PHILOSOPHICAL PERSPECTIVES ON ECONOMICS IN
THE CONTEXT OF INFORMATION THEORY

Joe Bleakley
University of Westminster, UK

Marjory Hamlin
Helwan University, Egypt

IA
Typewritten text
COMPUTERS IN EDUCATION JOURNAL

IA
Typewritten text
24

research programs. These schools also offer a

variety of gaming classes.

Pedagogy and course sequence

The catalog descriptions for the games courses

are given in Figure 1. Each course is three credit

hours and runs for an entire semester. The first

course, Comp 441, is to be taken in the first

semester, junior year; the second course, Comp

446, is taken second semester, junior year; and the

final course, Comp 447, is to be taken first term,

senior year. While we do not have a formal

course, some of our students participate in a

research project in the second term, senior year,

concerning multiplayer gaming or mobile gaming.

The courses are all in a lecture format, with

some design work done in class. GCC has a

comprehensive Tablet PC program, where all

students are given Tablet PCs as freshmen. These

machines are powerful enough for much of their

work in all three classes, aside from some

specialized assignments. Because all students have

machines, we do not have labs, aside from one to

house the console gaming equipment (as we

describe later).

By the time they are juniors, our students have

taken three semesters of programming, and have

in-depth experience with c++, programming

environments, and the c++ Standard Template

Library. Moreover, the students have also taken

data structures and algorithms, and so are

comfortable with designing, analyzing, and coding

high-performance algorithms and complex data

structures. In addition, they have taken computer

organization and operating systems. Thus, they

know about threading, memory organization, and

processes. All of these things—not just

programming—are needed for writing games.

Finally, by their junior year, all the students

have taken physics (statics, dynamics and

kinematics), three courses in calculus, and linear

algebra. Since students need to create all the

physics in their games (e.g., how a ball will

bounce off the end of the screen), they need to be

familiar with physics. Calculus and linear

algebra are used extensively in collision detection,

graphics and “implementing” physics.

The idea behind teaching a three course

sequence in game design is to expose the students

to a broad picture of development including art,

sound, level design, story, balance, and game

engine creation. Our philosophy is to teach the

students to create games with great gameplay, not

simply interesting technology: the courses focus

not only on the programming side of each of these

things, but encourage the students to create games

that are actually fun to play. We teach algorithms

and data structures applicable for use in games.

The first two courses involve the creation of

graphics and game engines, programming them

based on XNA and code from the books we use in

Figure 1: Catalog descriptions of the game sequence.

Comp 441. COMPUTER GAME DESIGN AND DEVELOPMENT. This course covers

concepts and methods for the design and development of computer games. Topics include:

graphics and animation, sprites, software design, game design, user interfaces, game

development environments.

Comp 446. ADVANCED COMPUTER GAME DESIGN AND DEVELOPMENT. This

course is a continuation of Computer Science 441 and is focused on the development of 3D

games and other advanced game programming techniques.

Comp 447. CONSOLE GAME DESIGN AND DEVELOPMENT. This course is a

continuation of Computer Science 441 and is focused on the development of console games,

with emphasis on both hardware and software design issues. The course will explore

sophisticated programming techniques and advanced algorithms. Prerequisites: Computer

science 441, 446, and permission of instructor.

IA
Typewritten text
COMPUTERS IN EDUCATION JOURNAL

IA
Typewritten text
25

class. The students make significant modifications

and extensions to these engines.

Each course builds on what the students have

learned in the previous course allowing for us, in a

three course sequence, to bring the students from

interactive fiction to complex, graphical games.

None of the games projects have unyielding

specifications, thus students are open to explore

and experiment with different ways to improve the

gameplay of their projects.

Comp 441

The main objective for Comp 441 is to teach

students the basics of game development. The

course is organized around three projects that

unroll over the term. The first project is a simple

arcade-style 2D game, like Pong. With XNA,

simple 2D graphics are easy to program, so we do

not need to spend a lot of time on technical issues

and can cover game design. Thus, they get

immediate experience with game play.

The second project is a more advanced arcade-

style game (e.g., see Figure 2) that has added

sound effects, background music, and other

graphical elements, like blending. The final

project requires students to develop complete

game, with multiple levels, splash screens, cut

scenes, high scores, and well balanced game play .

For all three projects, students choose the game to

implement and are required to write

specifications.

In Comp 441, we also set the stage for later

classes by having students develop a graphics

engine and a game engine. They also develop

physics and artificial intelligence (AI) subsystems.

Some students take our AI course while taking

games; these students then get to use sophisticated

AI methods in their games.

In Comp 441, the final project is the culmination

of the term, and takes the place of a final exam. In

fact, during the final exam period, the students

play and evaluate each other’s games. The

projects are graded according to the following

criteria[6] (note: these criteria are applied to the

final projects in later classes):

Figure 2: Example arcade-style game

(written by Michael Cason).

 Completeness: Does the game feel finished?

Does it have a title screen, credits, and

instructions? Is there support for keyboard,

mouse, or joystick input? Does the game have

sound support? Does the game run without

crashing?

 Game Play: How polished is the game play? Is

the game fun? If there is a story, is the story

immersive and connected?

 Creativity and Design: Did the student explore

beyond what was explicitly covered in class

lectures to include additional graphical effects

like particles (for later classes, we will

evaluate things like shadows, directional light

or environmental effects like water distortion,

heat waves, and lense flare)? Is the design of

the game novel in some way to include

elements that are unique to their design or

clever combinations of multiple game design

techniques?

These criteria are then weighted heavily toward

game play and completeness, while the creativity

and exploratory design aspects differentiate the

impressive games from the average and good

IA
Typewritten text
COMPUTERS IN EDUCATION JOURNAL

IA
Typewritten text
26

games. While this may seem vague (e.g., average

versus good), it is very apparent to both the

students and faculty how the games should be

categorized.

Comp 446

In Comp 446, the students will apply their game

development knowledge to creating 3D games..

The course plan is to create a specification at the

start of the class describing a simple 3D-shooter

type game that will be built from the ground up.

The 3D-shooter game is a perfect example to

begin 3D game development as it involves

cameras, multiple styles of player movement,

physics simulations, and more advanced collision

detection. The course lectures build on example

projects that demonstrate concepts in code that

can be adopted and transformed by the students in

their own projects.

Some of the topics covered include extending

the game engine developed in Comp 441 to three

dimensions, as well as extending the graphics

engine. This is a significant technological leap, as

the simple mathematics used in 2D games must be

significantly extended. For example, detecting

collisions between objects is much more complex

in 3D than it is in 2D. In addition, we need to

cover more sophisticated AI methods than we

used in 2D games.

Student grades in the class are based on their

final project, but regular project iterations are also

used. These demonstrations allows the class to see

the progress of their peers and learn from the

experiences other students are encountering on

their own projects. Using this iterative

methodology for game development, the students

end up building three games over the term.

Comp 447

Writing console games is demanding, as

consoles do not have the same types of runtime

environments enjoyed by a PC programmer and

more of the hardware interfaces are visible to the

programmer. However, with XNA, Microsoft has

provided a good transition to console

programming, as many of the things that work on

the PC will work on the console. Students enjoy

programming consoles, as they have a certain

panache that makes them very attractive.

The console games course is organized in a

similar way to Comp 441, in that there are a series

of projects of increasing difficulty. The graphics

and game engine knowledge developed in the first

two classes is applied to this course, with changes

made appropriate to new hardware.

One of the important additions to this class is the

use of the Xbox’s networking capabilities. The

main focus of this course is developing

multiplayer, networked games.

Since students have experience with 2D and 3D

game development, we do not need to cover the

technical aspects of these things. Rather, we

concentrate on things important to consoles. A

summary list of topics we cover is as follows:

 Since consoles use gamepads, input is

different. This has significant effect on game

design. For example, first-person shooters

play differently with a gamepad as opposed

to a keyboard and mouse.

 Cameras for multiplayer games are different

than single player ones. We discuss how to

use screen real estate effectively, and what

types of camera work well for different

games. For example, if two avatars are

controlled by two different players and

viewed with a single camera, how is avatar

movement handled so neither can leave the

camera’s view?

 Networking provides a variety of

opportunities and problems. Students need

to learn the technical details of network

programming using the XNA model. While

not as complex as some 3D topics,

networking is a challenging topic. Part of

this challenge comes from dealing with

latency and packet loss. In a high-

performance game, such as a first-person

shooter, these things can make a game

unplayable. Thus, students need to learn

how to adjust quality of service guarantees

to balance reliable packet delivery with

bandwidth and latency concerns.

IA
Typewritten text
COMPUTERS IN EDUCATION JOURNAL

IA
Typewritten text
27

Furthermore, they learn to use simulation in

their physics engines to account for latency

in packet delivery. For example, using

latency estimates, they “speed up” their

local physics engines to predict where a

remote player is in a shared

world.Networking also affects gameplay.

Students must learn what opportunities there

are with screens that are not shared among

player, and with player coordination issues

(e.g., starting a game in a fair way so that no

player has an advantage.)

 The first game is a 2D game to give the

students experience with networking and

console input devices.

 The second game is a 3D game, which can

be a reimplementation of a Comp 446 game.

This game emphasizes multiplayer

gameplay with extensions to the game

engine and emphasis on good camera work.

 The third and final project is a full-fledged

networked, multiplayer game. The students

are expected to connect with Microsoft’s

LIVE server, which requires going over the

Internet. This means that latency increases

(compared with local networking) and

packet loss increases. They need to address

these issues to keep their games playing

well. This is typically done by adjusting

quality of service and using simulation to

account for latency.

We note that network programming in Comp

447 is the most significant networking experience

our students get. Since XNA provides an

abstraction over the typical network layer (e.g.,

sockets), students can concentrate on issues

important to their games, such as handling latency

and packet loss while meeting real-time deadlines

(i.e., frame rates).

Programming Environment

All students at GCC get the latest HP Tablet PCs

when they are freshmen. For this year’s freshmen,

the CPU and GPU are fairly powerful and can

easily handle anything for the courses; for Comp

447, the Tablet PC is used to compile and then

deploy a solution to the Xbox. Thus, computer

hardware is not a major concern,

Developing games requires XNA, and that

requires Visual Studio (VS). Microsoft makes VS

and the XNA SDK (software development kit)

freely available, as well as a re-distributable

runtime environment.

Creating textures and other artwork is done with

various programs. In class, we use the Autodesk

3D Studio Max, and Microsoft Paint, among other

programs. For 3D work with articulated models or

complex meshes, a full-feature system, like 3D

Studio Max, is needed.

Students use a variety of systems for audio. The

recorder that comes in Windows is surprisingly

good for creating sound effects, particularly when

processed with Audacity. Students create MIDI

with a variety of sequencers, such as Cakewalk.

Of course, as with graphics, there are a variety of

good quality shareware and freeware systems

available.

The software and hardware needed for PC

gaming is surprisingly easy to get, and most

campuses can supply their students with the

necessary software for no cost if they have

Microsoft site licenses. Thus, it is straightforward

to offer gaming courses.

Experience

We have offered the games classes many times

over the past several years The courses have been

very well accepted by the students. Our survey

data supports this with overall high ratings for the

course (in fact, these classes are among the most

highly rated of our senior elective classes),

including students’ satisfaction with their projects.

In total, over 100 students have taken all the

games classes. As a point of comparison, our

senior class size is about twenty students. Game

programming is very popular, and, interestingly,

we have enrolled students from related disciplines,

such as EE, in the course sequence.

The projects are as follows:

IA
Typewritten text
COMPUTERS IN EDUCATION JOURNAL

IA
Typewritten text
28

There are a number of interesting things reported

by the students, such as the following:

 The amount of effort required to develop a

game is much greater than the students

expected. What is interesting to note is that

they are not necessarily commenting on the

effort for coding, rather it includes the design,

coding, creating graphics and music, and

balancing (e.g., developing a good scoring

system to make the game challenging, but still

playable, adjusting the strength of characters,

writing the backstory, and so forth). We try to

manage their expectations at the start of class,

but to no avail.

 The students spent a lot of time on their

games, but enjoyed the process. We have

received relatively few complaints about the

amount of effort and time spent. While hard to

measure exactly, we estimate that the students

spend about ten to fifteen hours per week, on

average, on their projects; this is for the

successful projects.

 The students gained an appreciation for the

non-programming aspects of game

development, particularly developing bitmaps,

sounds, and the importance of user testing.

The first time we offered Comp 441 the student

performance was mixed. Some students produced

excellent final games; but about half developed

games that were short of their specifications and

were hardly games at all (the user moved a figure

around the screen without any gameplay). Exit

interviews indicated this was because they waited

too long to start their games and could not finish

before the due date. These students did not fully

appreciate the complexity of the games they were

building.

The second time we offered Comp 441 and in all

classes subsequently, the final projects were

uniformly excellent. All the students produced

fully functional games. One change we instituted

was to have periodic demos in class through the

assignment period. Thus, the students were

motivated to keep up with development. Note,

interestingly enough, that we did not assign a

grade for these demos. Rather, it seems that the

students did not want to be shown up in class.

Our experience with Comp 446 mirror that of

Comp 441. Students are generally pleased with the

class, particularly as they are able to produce

excellent, albeit short, games. The mathematical

rigors and some of the programming issues, such

as shaders, does give students pause. Further, the

amount of time needed to create models and other

meshes (e.g., terrain) is significant.

Since the 3D are more complex than 2D games,

students must work in groups and learn how to

divide up work. Students will tend to specialize in

areas that interest them, such as physics engines or

model creation. This poses a problem to the

instructor, as we want them to understand all

aspects of game development. Without having a

good solution to this problem, we try to ameliorate

it with comprehensive exams and periodic code

reviews.

By the time students get to Comp 447, they are

experienced game developers and programmers.

While we do need to teach specific technical

elements for the console, namely networking, the

number of technical lectures is significantly less

than for the previous game classes. Thus, the

students are able to spend more time on game

design and balancing. This leads to some very

sophisticated networked, multiplayer games.

One of the most significant issues facing faculty

members wishing to build a gaming curriculum is

the dearth of textbooks. While there are many

books available on gaming, and some of them are

well written and very informative, they are not

textbooks. Much of the underlying theory on

algorithms and programming methods is missing

or treated in a cursory way; or, one must use

several texts to get the right combination of topics

and depth.

Summary

Our intention in creating the three-course

sequence in gaming is to provide our students

extensive experience in game development. We

want to educate game developers who, first and

foremost, create games with excellent play, and

IA
Typewritten text
COMPUTERS IN EDUCATION JOURNAL

IA
Typewritten text
29

who have the skills and expertise to manipulate

the underlying technology as they need for

creative purposes. In addition, the games courses

utilize much of what students have learned in their

first three years of undergraduate schooling and

provide excellent ways of building on and

incorporating material from courses students take

concurrently with the games courses (e.g., AI).

Since GCC is a small comprehensive college, we

hope to demonstrate that a gaming curriculum is

accessible to a broad range of colleges and

universities, both big and small. PC-based gaming

classes require very little beyond what is needed

to teach standard programming classes. Console

gaming requires more equipment and licensing,

but is a very popular and interesting topic.

References

1. Maxim, B. “Game development is more than

programming,” In Proceedings of the 2006

American Society for Engineering

Education Annual Conference and

Exposition.

2. Jones, R. “Design and implementation of

computer games: a capstone course for

undergraduate computer science education,”

In Proceedings of the 31st SIGCSE

Technical Symposium, ACM Press, New

York, NY, 2000.

3. I. Parberry, M.B. Kazemzadeh, and T.

Roden 2006. The Art and Science of Game

Programming. In Proceedings of the 2006

ACM Technical Symposium on Computer

Science Education (Houston, TX, Mar. 1-5,

2005). pp. 510-514.

4. Wolz, U., Barnes, T., Parberry, I., and Wick,

M. 2006. Digital gaming as a vehicle for

learning. In Proceedings of the 37th SIGCSE

Technical Symposium on Computer Science

Education (Houston, Texas, USA, March 03

- 05, 2006). SIGCSE '06. ACM Press, New
York, NY, 394-395.

5. LaMothe, A., Tricks of the windows game

programming gurus 2nd Edition. Sams, 2002.

6. I. Parberry, T. Roden, and M.B.

Kazemzadeh 2005. Experience with an

Industry-Driven Capstone Course on Game

Programming. In Proceedings of the 2005

ACM Technical Symposium on Computer

Science Education (St. Louis, MO, Feb. 23-

27, 2005). pp. 91-95.

7. LaMothe, A., Tricks of the windows game

programming gurus-Advanced 3D graphics

and Rasterization. Sams, 2002.

IA
Typewritten text
COMPUTERS IN EDUCATION JOURNAL

IA
Typewritten text
30

