
COMPITERS IN EDUCATION JOURNAL 1 

 

 

SOFTWARE-DEFINED RADIO IN SENIOR 

DESIGN: A MULTIDISCIPLINARY PERSPECTIVE 
 

William Birmingham 

Computer Science and Electrical Engineering Department 

Grove City College 
 

Abstract 

 

Multidisciplinary projects involving electrical 

engineering (EE) and computer science (CS) 

students are both exciting and difficult to create. 

We have created a year-long project based on 

software-defined radio (SDR). The combination of 

software and hardware makes SDR an excellent 

choice for senior projects. Senior CS students have 

enough programming experience to handle the 

software development; EE seniors have sufficient 

knowledge to understand the basics of radio, signal 

processing, and circuit design. The integration of a 

complex hardware and software system provides an 

excellent educational experience. In this paper, we 

describe the senior project courses, the pedagogical 

goals, and how it supports our ABET course 

outcomes. 

 

Introduction 

 

Software-defined radio (SDR) is an important 

technology that underlies many modern wireless 

communications systems for both telephony and 

data communications. With the availability of 

cheap high-speed computing platforms, 

inexpensive electronics, and good software 

development platforms, we believe that SDR is one 

of the most effective ways to meet the increasing 

demand for low-cost, flexible data and voice 

communication systems. 

 

One of the great things about SDR for 

undergraduate education is that the technology is 

popular among hobbyists (particularly amateur 

radio operators) and academics (many of whom are 

hams). Thus, a variety of SDR systems can be 

constructed with relatively low cost and from 

publically available (i.e., non-proprietary) hardware 

and software components. Examples include the 

GNU radio[1]and FlexRadio’s line of SDRs[2]. 

SDR is a flexible platform that can be easily 

modified to suit a wide variety of applications, 

ranging from changing waveforms, to operational 

frequency bands, and to specialized user interfaces 

for particular services. Ideally, only software needs 

to be changed to make these modifications; there is 

no need to change the hardware. In addition, since 

SDR systems (to varying degrees) place most of the 

radio processing in software, an SDR system can 

be ported to various computing platforms in a 

straightforward way. For example, at Grove City 

College (GCC) we are working on an SDR that will 

work across various Microsoft platforms: 

Windows, Windows Mobile, and (we hope) Xbox 

and Zune devices. 

 

From the software side, an SDR is a self- 

contained, embedded software system with real- 

time deadlines and hardware interfaces. The 

hardware interface for our systems is minimally an 

RF down-converter and A/D for receiving, and a 

D/A and an up-converter for transmitting. While 

the hardware circuitry is well defined, it can be 

challenging to build because radio operating 

frequencies are in the radio frequency (RF) 

spectrum. For example, our applications are in the 

0.1 MHz – 50 MHz range, specially, the amateur 

and commercial radio bands with both voice and 

data communications. Real-time deadlines occur 

because the RF signal must be processed as it is 

received, meaning that streaming buffers need to be 

consumed and filled without any dropouts, pops, 

and other distortions. 

 

At GCC, we have an on-going undergraduate 

research project in SDR. Recently, the students in 

that project developed a general coverage SDR 

receiver for decoding commercial AM and FM[3]. 

That project is being extended to a new operating 

system and new hardware. 



2 COMPUTERS IN EDUCATION JOURNAL 

 

 

PC 
I and Q SIgnals 

 
rd 

 
Sound Ca 

Building on our undergraduate research 

experience, like that of other schools[4], we 

launched a senior project in SDR. This project is 

focused on developing a Digital Radio Mondiale 

(DRM) receiver[5]. The CS team works in 

cooperation with an EE senior project team, where 

the CS team is developing the software and the EE 

team is developing a frontend. 

 

SDR Architecture 

 

Figure 1 shows the basic SDR components. 

 

The SDR requires a hardware frontend that 

contains a “down-converter,” which converts the 

RF signals at the received frequency into two parts: 

the I signal (in-phase) and Q (quadrature) signal, 

which is 90 degrees out of phase (relative to I). To 

perform down-conversion, we use a Tayloe 

detector[6]. The detector is a simple, inexpensive 

circuit that does a complete quadrature down- 

conversion. The I and Q signals feed directly into 

the soundcard of the PC, where they are converted 

from analog to digital signals using the soundcard’s 

A/D converter. 

 

Once converted by the soundcard, I and Q signals 

are demodulated. This process consists of the 

following basic steps for receiving[7-10]. 

 

1. Time-domain shift: while I and Q are in the 

time domain, their (center) frequencies are 

shifted to baseband. 

2. FFT: to demodulate these signals, they must be 

converted to the frequency domain using a Fast 

Fourier Transform (FFT). 

3. Filtering: the signals are low-pass filtered to 

extract the needed frequency components and 

to remove redundant information. 

4. Shift: the FFT bins are shifted to prevent 

attenuation at the ends of the signal. 

5. Filtering: the signals are high-pass and low- 

pass filtered so that only the frequencies 

carrying the information we want are in the 

FFT bins. 

6. Shift: the FFT is shifted back to baseband. This 

shift is necessary to prevent distortion around 

the beginning and end of the spectrum. 

7. IFFT: an inverse Fast Fourier Transform 

(IFFT) is performed on the data to get it back to 

time-domain I and Q components. 

8. Demodulation: various methods are used to 

demodulate the signals. For example, and AM 

signal is demodulated simply by taking 
 

 

√I2 + Q2 

 
Given the sampling rate of the soundcard and the 

types of waveforms we are converting, the software 

must process each digital sample within about 250 

mS. 

 

Pedagogy 

 

The CS department has a two-semester senior 

project course track. The first semester, a one-credit 

course is given that emphasizes design 

(particularly user interface analysis and testability), 

project planning, specification, and the ethical 

implications of the students’ software systems. The 

second semester, a two-credit course that 

emphasizes implementation, project management, 

testing, and usability assessment is 
 

 

Antenna 

 
 
 

 

Figure 1: The components of a simple SDR receiver. 

 

RF Downconversion 
(Hardware) 



COMPITERS IN EDUCATION JOURNAL 3 

 

 

given. These courses are required of all CS 

students. The EE department has a similar senior- 

project course track, but their courses have 

different emphases, particularly in testing and 

implementation. 

 

We give the ABET outcomes for the two CS 

senior project course and comment on SDR’s 

application to those outcomes. These things are 

found in Table 1. The CS and EE faculty believe it 

is important for students to gain experience in 

multi-disciplinary projects. SDR provides a perfect 

project around which to organize such multi- 

disciplinary CS and EE teams for the following 

reasons: 

 The software and hardware components are 

easily divisible. 

 The interfaces between the components are 

well-known and are (fairly) straightforward; yet 

allow some interesting design choices. 

 Since there are existing hardware and software 

platforms available (see Summary for more 

information), the CS students can proceed with 

their development and testing while the EE 

team designs and fabricates their hardware. The 

EE students can test their hardware using 

existing SDR software to ensure it works 

before final testing with the CS students’ 

software. This “division of concerns” makes 

the projects more management for both teams. 

More importantly, the ultimate success of each 

group is not necessarily tied to the other group. 

This helps to prevent internecine conflicts 

among the students (and faculty!). 

 The SDR applications are very broad, from 

amateur radio to public service (e.g., police, 

fire, and other emergency services) to 

specialized applications (third-world 

communication). For students with a strong 

service inclination, SDR is a natural fit. 

 

CS Students 

 

Our senior CS students have taken at least four 

programming courses, in addition to algorithms, 

data structures, and software engineering. They are 

experienced with advanced object-oriented design 

and large-scale team-based programming. In 

addition, most CS students gain experience with the 

Windows programming model, .Net, XNA, 

DirectX and COM. In our game-programming 

courses, they gain experience with real-time 

programming, particularly meeting hard deadlines 

and the tradeoffs between on-line and off-line 

processing. SDR gives students the opportunity to 

use the programming and algorithms knowledge 

they acquired during their years of study. 

 

Furthermore, CS students get experience with 

low-level implementation details, something that is 

often missing in typical CS undergraduate 

education. They need to pack and unpack floating 

point numbers represented in a variety of bit 

formats (e.g., byte-by-byte interleaved), as well as 

interface directly to Windows’s audio streaming 

buffers. 

 

EE Students 

 

By their senior year, EE students have a good 

background in signal processing with additional 

courses in communications and control theory. At 

this point, they also have completed courses in 

analog and digital circuit design, as well as 

microprocessor interfacing. With this background, 

they are able to design the radio frontend. 

 

Project Organization 

 

The EE and CS teams met occasionally over the 

two terms as needed (mostly, as prodded by the 

faculty). In these meetings, we discuss both 

progress and various technical problems and how 

to solve them. Mostly, this involves ensuring the 

interfaces are correct and coordinating project 

management items. By and large, the teams work 

independently. 

 

The complexity of the projects, both hardware 

and software, takes all the efforts of each group. 

Because of this, the work stays divided by 

discipline. It is not practical for CS majors to learn 

enough about circuit design and fabrication to 

actively participate in the EE’s tasks, and the same 

holds for EE students participating in software 

design, implementation and testing. 



4 COMPUTERS IN EDUCATION JOURNAL 

 

 

Table 1: ABET Course Outcomes. 
 
 

Outcome 1: How to design 

and evaluate, from multiple 

perspectives, a software 

system. 

Since SDRs are used by non-computing professionals, an easy-to-use 

interface is essential. SDR systems must be evaluated from a usability 

perspective. Moreover, algorithm performance and hardware 

performance (e.g., energy use) must be considered. Finally, these 

systems must conform to FCC regulations, which expose students to 

regulatory compliance. (We do not do this compliance analysis, as we 
use FCC-approved transmitters). 

Outcome 2: How to present 

and defend ideas in front of 

a group. 

Students must present their design and rationale, as well as system 

specifications and final product demonstration and accompanying 

documents to technical and non-technical faculty at end of each 

semester. In addition, frequent demos and technical walkthroughs give 

students opportunity to present and defend their systems before 

classmates. Since most CS students in the project courses do not know 

SDR concepts, the “SDR students” learn how to explain these things to 
their classmates. 

Outcome 3: How to use 

software-engineering 

methods for implementing 

and testing a software 
system 

SDR systems are complex and can only be built by a group. 

Multidisciplinary teams force each team to interact with those outside 

their expertise.The testing experience is richer than software-only 

systems (ditto for hardware-only systems), as they test against 
hardware that is evolving with their software. 

Outcome 4: How a software 

team is organized and 

operates 

The SDR experience enriches the usual project management 

components of senior design projects, as the software team must also 

accommodate a hardware team that runs in a different way than they 

do. For example, hardware fabrication takes weeks and is (typically) 

one-shot, this is very different from the nearly instant code-build- 
refactor methods used by software teams. 

Outcome 5: How to search 

and read articles in the 

computing literature 

The SDR project forces students to read a variety of literature outside 

what they normally read. CS students must read about hardware 

systems, digital signal processing, and radio engineering. 
 

Thus, the SDR project is a true multidisciplinary 

one, where the students must learn to work with 

each to get the complete system built. 

 

Results 

 

The CS and EE students each finished their 

respective projects. The EEs designed the circuitry 

and created a multilayer circuit board design. 

The board was fabricated by an external 

manufacturer. The board was then populated by the 

students and a staff technician. Unfortunately, a 

mistake in the circuit board design prevented the 

front end from operating properly, although, 

portions of the board did operate as designed. There 

was no time for the team to get another board 

fabricated. 

The CS students were able to get a functioning 

AM and FM SDR operating in the commercial 

radio bands. They were not able to get a DRM 

receiver working, mostly because of the complexity 

of decoding the DRM signal. 

 

Since the EE’s board did not operate, the two 

teams were not able to integrate their projects; the 

CS team used a commercial receiver. While it was 

disappointing to both teams that they could not 

complete the entire project, both teams were able to 

significant components of their own systems 

working. 

 

We ran similar projects in the past several years, 

once as an EE-only senior project in SDR and once 

as a multidisciplinary team. The projects’ results 

were mixed: both projects were able to get AM and 

FM decoding working, but not in real time. These 

systems were able to process recorded I and Q 



COMPITERS IN EDUCATION JOURNAL 5 

 

 

signals of arbitrary duration. The problems both 

groups faced were hardware and soundcard 

interfacing. While the circuits appear to be simple, 

there are practical issues with relatively high- 

frequency circuit layout that cause novice designers 

problems. Interfacing to the soundcard is more 

complex than it seems at first: unpacking and 

scaling the output of the card’s A/D converters 

requires considerable skill. 

 

Summary 

 

The SDR project provides undergraduate students 

the opportunity for multidisciplinary projects. The 

project technology underpins today’s advanced 

wireless systems, and it reinforces the classroom 

knowledge gained by both computer science and 

electrical engineering students. 

 

The SDR project is fun, and it is great practical 

experience. The project gives students the chance 

to work with students in another disciple, allows 

them to apply much of what they learned during 

their matriculation, and exposes them to an 

important technology. 

 

We note that CS departments can easily use SDR 

as a software-only project simply by purchasing the 

necessary hardware components. A variety of 

companies produce hardware that will supply I and 

Q signals (see Flexradio[2], TenTec Radio 

Mondiale Receiver[11], and the cost-effective, 

hobby-oriented SoftRock[12]). In addition, EE or 

CE programs can use SDR as a hardware-only 

project by using existing open-source software 

systems, such as the GNU radio project, 

Flexradio’s software, or Dream for Radio 

Mondiale[13]. 

 

Acknowledgements 

 

We would like to acknowledge GCC’s Swezey 

research fund for providing equipment and student 

research stipend support. 

 

References 

 

1. Blossom, E., Listening to FM radio in 

software, step by step. Linux Journal, 

September 2004, Vol. 125. 

2. FlexRadio Systems. [Online] http://www. 

flex-radio.com/. 

 

3. Birmingham, W. and L. Acker, Software- 

defined radio as an undergraduate project. 

Proceedings of ACM SIGCSE, Covington, 

KY, 2007. 

 

4. Silage, D., Reintroducing Amateur Radio In 

ECE Capstone Design Projects. Proceedings 

of the 2004 American Society for Engineering 

Education Annual Conference & Exposition. 

 

5. Digital Radio Mondiale Consortium. [Online] 

http://www.drm.org/. 

 

6. Tayloe, R., US Patent #6,230,000 

 

7. Youngblood, G., A Software-Defined Radio 

for the Masses, Part 1. QEX. 2002, Vol. 

July/Aug, pp. 1-9. 

 

8. —. A Software-Defined Radio for the Masses, 

Part 2. QEX. 2002, Vol. Sept/Oct. 

 

9. —. A Software-Defined Radio for the Masses, 

Part 3. QEX. 2002, Vol. Nov/Dec. 

 

10. —. A Software-Defined Radio for the Masses, 

Part 4. QEX. 2003, Vol. Mar/Apr. 

 

11. Ten-Tec . [Online] http://radio.tentec. com/. 

 

12. SoftRock. [Online] http://www.softrock 

radio.org/. 

 

13. Dream DRM Receiver. [Online] 

http://apps.sourceforge.net/mediawiki/drm/ind 

ex.php?title=Main_Page. 

 

Biographical Information 

 

Dr. Birmingham is the chair of the Computer 

Science Department at Grove City College. 

Before coming to Grove City College, he was a 

tenured Associate Professor in the EECS 

Department at the University of Michigan, Ann 

Arbor. His research interests are in AI, computer 

gaming, mobile computing and communications, 

and computer-science pedagogy. He received his 

Ph.D, M.S., and B.S. all from Carnegie Mellon 

University. 

http://www/
http://www.drm.org/
http://radio.tentec/
http://apps.sourceforge.net/mediawiki/drm/ind

