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Abstract 

 

The kinetic theory of gases is an important 

element of undergraduate training in various 

engineering and scientific fields. This article 

presents a general derivation of the moments of 

the Maxwell-Boltzmann velocity distribution 

for arbitrary dimension. Numerical simulations 

of hard hypersphere collisions are performed to 

test the theoretical predictions. Good agreement 

is found. Such activities expose students to 

special functions, numerical simulation 

methods and graphics software. 

 

Introduction 

 

Students in engineering and science need to 

understand the relationship between 

microscopic molecular motion and macroscopic 

properties. The kinetic theory of gases [1] 

makes this connection by relating macroscopic 

properties such as the temperature to the 

average of the square of the velocities of 

individual particles. In D dimensions the 

kinetic energy, ½ m   
2
>, is given as 

½ m<V2> = ½ D kBT (1) 

2 

The velocities follow the Maxwell-Boltzmann 

probability distribution function. This 

distribution function is essentially a Gaussian 

distribution. The D-dimensional Gaussian 

distribution, P(V), is given by 

 
P(V) = [D / (2π<V2>)] D/2 exp( - DV2 /(2<V2>)) (2) 

 

P(V) must obey the normalization condition for 

probabilities: 

 

∞ ∞ 

1   = ∫ ... ∫ P(V) dV (3) 

- ∞ - ∞ 

 

where dV in Eq. 3 is the appropriate volume 

element in D-dimensional velocity space. 

 

In two dimensions (D=2) for example, the 

volume element in Cartesian coordinates is dVx 

dVy. Since the velocities have angular 

symmetry, polar coordinates can be employed 

to reduce the integral over two separate 

components, Vx and Vy, to a single integral. 

The volume element in polar coordinates is 

dV = dθ VdV. 

 

Then Eq. 3 becomes 
∞ 2π 

Here, m is the mass of the particles, <V >, is 1 = [1/(π<V2>)] ∫ ∫ exp(-V2/(<V2>))dθ VdV (4) 

the average of the square of their velocities, kB 

is Boltzmann's constant and T is the absolute 
temperature. The right side of Eq. 1 follows 
from the law of equipartition [1]. Each degree 

of freedom contributes one factor of ½ kBT to 

the energy and there are D total translational 
degrees of freedom for unstructured hard 
hyperspheres in D dimensions. In this article we 

employ reduced units for which m/kBT = 1. 

0 0 

 

The right hand side of Eq. 4 evaluates to 1 as 

expected. 

 

According to Eq.1, in D dimensions, 

2 
<V > = D (5) 

 
The general equation for the average value of 

Q 
the Q - th moment of velocity, <V >, is given 
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Z 

by If we set Z = V
2

 

∞ ∞ 
Q Q 

/ 2, Eq. 11 reduces to 

<V > = ∫ ... ∫ V P(V) dV (6) 

- ∞ - ∞ 

 

To transform this general case which involves 

 
Q Q/2 

<V >=[2 

∞ 

/Γ(D/2)] ∫ 
(Q + D)/2 – 1 

0 

 
exp(Z)dZ 

 
(12) 

D component integrals to a single integral over 

the magnitude of V, |V|, one needs to relate the 

Cartesian coordinates of V to its D dimensional 

spherical coordinates involving |V| and the 

which becomes 

Q Q/2 
<V > = 2 

 

 
Γ( (Q+D)/2) / Γ(D/2) (13) 

D - 1 angles θ1 θ2... θ D - 1. Alternatively, one 

can reformulate the integration procedure as 
integrating over the surface area of a D- 

dimensional hypersphere, ΩD. To do this we 

change the expression given in Tiglias and 
Bishop [2] in R space to V space, to find that 

Eq. 13 is the generalized D-dimensional Q-th 

moment which will be compared with 

simulation results. 

 

When Q = 2, one finds that 

2 

ΩD = 2 π 
D/2 

V 
D - 1 

 

/ Γ(D/2) (7) 
<V > = 2 Γ( (2+D)/2) / Γ(D/2) (14) 

where, Γ is the Gamma function [3] 
 

∞ 

Γ(x) = ∫ t 
x - 1 

exp ( - t ) dt (8) 

0 
 

Thus, the general equation for the Q - th 

moment can be recast as 
 

∞ 

However, one of the properties [3] of the 

Gamma function is that Γ(1 + X) = X Γ(X). It 

then follows that 

 

Γ((2+D)/2) = Γ(1+D/2) = (D/2) Γ(D/2) (15) 

 

and Eq.5 is obtained. 

 

Similarly, when Q = 4, 6 and 8 we find that 

4 

Q Q 
<V > =  ∫ V 

0 

or 

P(V) ΩD dV (9) 
<V > = (D + 2) D (16) 

 
6
> = (D + 4) (D + 2) D (17) 

 

<VQ> = {2π D/2 / Γ(D/2)} [D / (2π<V2>)] D/2 
∞ 

and 

∫ V 
Q + D - 1 

exp ( - DV2 / 
2
>)) dV (10) 

(2<V 
0 

8
> = (D + 6) (D + 4) (D + 2) D (18) 

 

Using Eq. 5, this simplifies to 

 

<VQ> = [21 – D/2 / Γ(D/2) ] 

 

∞ 

∫ V Q + D - 1 exp(-V2/2) dV (11) 

0 

The numerical values for these moments when 

D = 2 through 5 are listed in Table I. 

<V 

<V 
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Table I. Theoretical values of the moments in 

different dimensions 

not collide. The discriminant cannot be 

negative or the equation will have complex 

roots. Taking the smaller of the two roots, one 

finds that 

2 2 2 1/2 2 
tij = [- bij - (bij - vij (rij -1)) ] /vij (22) 

 
Then the tijs for all the possible pairs need to 

2 
be computed. This is an O(N ) calculation if 

 

Computer Simulation 

 

We have developed an independent study 

project for a simulation and modeling course 

which tests Eq.13 for D = 2 through 5 

dimensions by computing the moments of the 

velocity distribution of hard hyperspheres. 

Detailed discussions of the properties of hard 

particle systems are available in the literature 

[4,5,6]. These sources also include sample 

codes. 

 

We first consider a two dimensional system 

with N disks at a density ρ. These parameters 

determine the side length of a box containing 

the disks 

done directly inside two nested loops over i and 

j. We have utilized this approach for simplicity. 

The smallest tij value is selected and all 

particles are moved for that time. The velocities 

of the colliding pair then change. We assume 

perfectly elastic collisions for which the kinetic 

energy and linear momentum are conserved. 

Then 

vi (after) = vi (before) + dvi (23a) 

 

and 

vj (after) = vj (before) – dvi (23b) 

 

where 

dvi = - bij rij (24) 

bij is evaluated at the moment of impact. 

L = (N / ρ) 
½

 

 

(19) 
Now the tijs of all particles which would have 

collided with particle i or j need to be updated. 

After this procedure a new shortest tij is found 

Each disk is given an initial position and 

velocity. Let two disks, i and j, with a diameter 

of one in our reduced system of units, have 

positions ri and rj and velocities vi and vj at 

time t. If these disks are to collide at time t + tij, 

e.g. be tangent, then 

 

| rij(t+tij)| = |rij + vij * tij| = 1 (20) 

 

where rij = ri - rj and vij =   vi – vj. Define 

bij = rij · vij and then Eq. 20 becomes 

vij
2 

tij
2 

+ 2bij tij + 
2 

– 1 = 0 (21) 

and the process repeated. In this manner the 

two dimensional hard disks are moved. We 

have selected a ρ value of 0.2. A total of 

1,000,000 collisions are followed and 500,000 

are discarded to allow for equilibration. Data is 

gathered every 1,000 collisions and the mean 

and standard deviation of the 500 samples are 

obtained via standard methods [7]. It is simple 

to extend this analysis to higher dimensions 

since all the above equations are cast in terms 

of vectors. Figure 1 illustrates the locations of 

64 three dimensional spheres at a density of 0.2. 

The left panel contains a snapshot of the 

starting configuration whereas the right panel is 

a snapshot of the last configuration. 

This is a quadratic equation in tij. If bij > 0 the 

disks are moving away from each other and will 

D 
2 

<V > 
4 

<V > 
6 

<V > 
8 

<V > 

2 2 8 48 384 

3 3 15 105 945 

4 4 24 192 1920 

5 5 35 315 3465 
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Figure 1: Snapshots of the initial and final configurations when N=64, Density=0.2, with 100,000 

collisions discarding the first 50,000. 

 

Table II. Values of the velocity moments in different dimensions obtained by simulation 
 

D N 
2 

<V > 
4 

<V > 
6 

<V > 
8 

<V > 

2 625 1.993±0.004 7.969±0.021 47.864±0.266 383.688±0.446 

3 512 2.983±0.006 14.748±0.036 101.080±0.481 880.922±8.764 

4 625 3.994±0.008 23.925±0.054 190.355±0.699 1884.22±13.15 

5 243 4.996±0.010 34.905±0.083 312.429±1.362 3401.66±28.72 

 
 

The program was coded in C++. The 

simulation results are contained in Table II. 

 

There is generally good agreement between 

these values and the theoretical predictions in 

Table I. The differences from the theoretical 

values depend upon the number of 

hyperspheres, the number of collisions, and the 

magnitude of the quantity studied. 

 

Conclusions 

 

We have presented a general derivation and 

performed computer simulations of the average 

moments of the velocity of hard particle 

systems in two to five dimensions. The 

agreement between the theoretical predictions 

and the computer results for the second, fourth, 

sixth and eighth moment of velocity depends 

upon a number of factors. Having students 

numerically compute these moments exposes 

them to important ideas in kinetic theory, 

computer modeling, computer programming 

and statistical tools which will be of great use 

in their future careers. Snapshots generated 

with the Maple software package reveal the 

random arrangement of particles after a 

sufficient number of collisions and further 

enhance student understanding. This project 

demonstrates the key elements of simulation 

and the impact of statistical fluctuations. 
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Appendix: The Manhattan College 

Undergraduate Research Program 

 

Manhattan College has a long tradition of 

involving undergraduates in research and was 

one of the original members of the Oberlin 50 

[8]. This is a group of undergraduate 

institutions whose students have produced 

many PhDs in engineering and science. At 

Manhattan College, students can elect to take 

an independent study course for 3 credits 

during the academic year. In addition, the 

College provides grant support to the students 

for 10 weeks of work during the summer. I 

have personally recruited the students from my 

junior level course in Systems Programming. 

Previously published articles in this journal by 

Manhattan College student co-authors are a 

very effective recruitment tool. The students 

have also presented their results at a variety of 

undergraduate research conferences including 

the Hudson River Undergraduate Mathematics 

Conference and the Spuyten Duyvil 

Undergraduate Mathematics Conference. 
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