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Solutions to transient conduction problems 

with convection boundary conditions involve 
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infinite series that usually converge rapidly. 

Evaluation of these series requires the 

computation of eigenvalues from equations that 

can only be solved by trial and error. Because 
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this process is rather tedious, several 4 sin i   i cosi 
approximate methods have been developed. 

These methods are less tedious to apply than the 

exact solution, but they must be used with care. 

This article makes a comparison of the exact 

solution to transient heat conduction in a sphere 

to three approximate methods: the lumped 

Ai 



and i 

2i  sin 2i 


satisfies the eigenvalue equation 

capacity method, the Heisler chart method, and 

the Heat Balance Integral method. Mathcad 

software was used with each of these methods. 

 

Approximations to the Exact Solution 

 

One-dimensional, unsteady heat conduction in 

a sphere is governed by the following partial 

differential equation: 
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This equation is usually solved by assuming 

that the temperature can be represented as the 

product of two functions, one a function of 

radius only and the other a function of time 

only. Application of boundary and initial 

conditions leads to the following general 

solution: 

 

 
The principal source of tedium in generating 

the exact solution is finding the eigenvalues λi, a 

process that can only be done by trial and error. 

Use of modern computer tools such as Mathcad 

can remove much of the tedium. Figure 1 

shows part of a Mathcad worksheet that finds 

the first eigenvalue from Equation 3 above. 

Because trial and error is required, a Mathcad 

solve block is used. Additional eigenvalues 

were found by choosing other guess values. 

The values of A1, A2, and A3 were calculated by 

substituting the first, second, and third 

eigenvalues into Equation 2. A Mathcad 

function was created based on Equation 1 
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above. The function for a two-term 

approximation to the exact solution is 
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sin 1  X  
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The dimensionless temperature should 

approach one as τ approaches zero. All three 

approximations deviate from one when τ is 

sufficiently small. As the graph shows, the one- 

term approximation diverges from the other two 

1  X 2  X at values of τ less than 0.2. The two-term 
solution appears to be accurate to about τ = 

0.06, and the three-term solution appears to be 
It is generally accepted[1] that a solution based 

on just one term of this series is accurate within 

2% for values of dimensionless time, τ, greater 

than 0.2. The graph in Figure 2 shows the 

dimensionless temperature at the center of the 

sphere for τ less than 0.2. Clearly, the one-, 

two-, and three-term approximations to the 

exact solution converge as τ approaches 0.2 

from the left. 

accurate to about τ = 0.04. As more terms are 

added, the solution can be expected to be 

accurate to even smaller values of τ. This is of 

questionable merit, because at τ = 0.06, the 

dimensionless temperature is already close to 

0.98 for both the two- and three-term 

approximations. 

 

Fourier Series Solution for Heat Transfer in a Sphere 
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Figure 2 

One‐, Two‐, and Three‐Term Approximations to Center Temperature of 

Sphere 
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The Lumped  Capacity  Approximation 

 

The simplest of the approximate methods is 

called the Lumped Capacity Method. In this 

method, it is assumed that conduction within the 

sphere is much more rapid than convection from 

its surface. As a result the sphere is considered 

to be at a uniform temperature. A solution is 

obtained by equating the rate of change of 

internal energy of the sphere to the rate of 

convection from the surface. The differential 

equation is: 

d T  T
fluid 

The Heat Balance Integral HBIM) 

Approximation 

 

Details of this method are to be found in Chen 

and Kuo[2]. This method is also considered 

valid for τ > 0.2. Because the equations for the 

HBIM approach are quite complex, they are not 

reproduced here. Interested readers should 

consult Reference 2 for this information. 

 

A Comparison of Methods 
 

All of the methods above have been applied to 

a sphere of radius 2.75 cm with the following 

mCP 
dt 

 hAs T  Tfluid  properties: k = 0.632 W/m/ºC, ρ = 1000 kg/m3, 

CP = 1.0 kJ/kg/ºC. The sphere is initially at a 

where m is the mass, CP is the heat capacity, h is 

the convection coefficient, and As is the surface 

area of the sphere.  The familiar solution is: 

uniform temperature of 8ºC. At time zero it is 

submerged in a fluid at 100ºC with convection 

coefficient 22 W/m2/ºC. The temperatures at 

the center and surface of the sphere after 3 and 

20 minutes are to be found. 
T  T fluid  

  hAs t
 

 e m·CP 

Tinitial  Tfluid 

 
This solution is considered valid if the Biot 

number is less than 0.1. 

 

In this case, the Biot number is defined as 

h·L/k, where the representative length L is 

defined as the volume divided by the surface 

area. In the case of a sphere, this is one third of 

the radius. In the denominator, k is the thermal 

conductivity of the sphere. 

 

The Heisler  Chart  Approximation 

 

This approximation is based on the first term 

of the Fourier series exact solution. Charts of 

this solution are widely available in heat transfer 

textbooks and in handbooks. As indicated in 

Figure 2, the one-term approximation is quite 

accurate for τ > 0.2. 

For the conditions stated above, the Biot 
number is too large by about a factor of three, so 

the Lumped Capacity approximation should not 

be considered valid at either time. The value of 

τ is 0.15 at three minutes and 1.0 at 20 minutes, 

so the Heisler Chart and Heat Balance Integral 

approximations should be valid at 20 minutes 

but invalid at 3 minutes. 

 

Table 1 shows a comparison of results after 3 

minutes for the following methods: Lumped 

Capacity, Heat Balance Integral, one-term 

Fourier series (Heisler Chart), two-term Fourier 

series, and three-term Fourier series. As noted 

above, Lumped Capacity, Heisler Chart, and 

HBIM are not valid. Despite that, Heisler Chart 

and HBIM agree quite well with the two- and 

three-term approximations to the exact solution. 
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Table 1 

Sphere Temperatures (ºC) at 3 Minutes. 

 
 Lumped Cap HBIM 1-Term 2-Term 3-Term 

Center 40 18 19 20 20 

Surface 40 47 47 47 47 

 

Table 2 

Sphere Temperatures (ºC) at 20 Minutes. 

 
 Lumped Cap HBIM 1-Term 2-Term 3-Term 

Center 95 89 89 89 89 

Surface 95 93 93 93 93 
 

 

As expected, Lumped Capacity does not give a 

useful solution. 

 

Table 2 shows a comparison of results after 20 

minutes for the same methods. The value of τ is 

1.0, so Heisler Chart and HBIM are valid. All 

methods except Lumped Capacity agree within 

one degree Celsius. Even Lumped capacity is 

fairly close with an error of five or six degrees 

Celsius at the center and two degrees Celsius at 

the surface. Of course, the asymptotic solution 

as time goes to infinity is a uniform temperature 

of 100ºC throughout the sphere. Thus the 20 

minute case is not particularly demanding. 

 

Conclusion 

 

Calculations for the three-term Fourier series 

solution for transient heat transfer in a sphere 

subject to a convection boundary condition are 

quite tedious. Equivalent calculations for the 

Heat Balance Integral Method are even more so. 

The author has created Mathcad templates for 

both approaches and made these templates 

available to students on a course Web site. Thus 

there is no need for students to “reinvent the 

wheel” in order to explore these methods. 

 

The numerical values presented above are 

taken from an assignment in which students 

compare methods for solving transient heat 

transfer. This assignment is used to help them 

gain an appreciation for the range of 

applicability of several approximate solution 

techniques. 
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