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Abstract
This paper is the second part of a two-part study on promoting the use of Open-Source Software
(OSS) inMechatronics and Robotics Engineering (MRE) education. Part I demonstrated the capa-
bilities and limitations of several popular OSS, namely, Python, Java,Modelica, and GNUOctave,
in model simulation and analysis of dynamic systems, through a DCmotor example. The DCmotor
was chosen as a representative of a large class of dynamic systems described by linear differential
equations. The perceptions ofMRE communitymembers about theOSS and their applications,
gathered through an online survey, were also presented in Part I. In this paper, another funda-
mental pillar ofMRE systems development, i.e., controller implementation, is considered. To this
end, theOSS above, alongwith Gazebo, are used to simulate the closed-loop trajectory tracking
performance of a 2-DOF robotmanipulator, controlled by a PID controller. Robotmanipulators
represent a broader category of dynamic systems, which are described by nonlinear differential
equations. Furthermore, PID controllers are one of themost versatile closed-loop control method-
ologies which have been established as the industry standard. Showcasing the implementation of
this important category of controllers throughOSS can promote their use in a wide range ofMRE
problems and projects. This paper also provides an overview of the potentials, limitations, and
challenges regarding the use of each of the aboveOSS in solving the aforementioned problems.
TheOSS are increasingly being adapted as industry standard; furthermore, their numerous bene-
fits pose them as a viable option to complement traditional higher education courses alongwith
facilitating online and remote education. Therefore, this two-part paper and the various problems
showcased and solved therein aim to pave the way towards further utilization of the OSS inMRE
higher education, reaping the wide range of their benefits, and preparing the students for the
future workforce. Full scripts of the codes summarized and discussed in this paper, along with
Matlab scripts included to enable comparison, are made freely available on the Github repository
of this paper.

Keywords: Controls, Engineering Pedagogy, Mechatronics, Open Source, Robotics, Simulation-
Based Learning



1 Introduction
The field ofMechatronics and Robotics Engineering (MRE) has experienced an organic and rapid
growth in the past few decades, mainly thanks to all the technological advancements in control
systems, electronics, computers, and connectivity and increased demand for robotics and automa-
tion in industry. This ongoing progress has increasingly resulted in the development of new job
roles such asmechatronics or robotics engineers and specialists. To prepare the next generation
of engineers to fulfill these responsibilities, various stand-alone courses have been offered in
Mechanical Engineering, Electrical Engineering, and Computer Science departments. In recent
years, there has been a transition in higher educational institutions to developminors andmajors
inMechatronics and/or Robotics Engineering tomeet the industry demands. Authors in [1] share
their experiences and the lessons they learnt during 10 years since they started one of the first
Robotics Engineering programs in the United States.
An essential part of anyMRE educational program should be to provide its students with an inter-
disciplinary knowledge of mechanical, electrical, computer, software, and systems engineering.
Robotics courses have traditionally provided an opportunity to educate the students with such
an interdisciplinary knowledge. The entertaining nature of the robots has further established
them as attractive learning and motivational platforms for K-12 and freshman students [2–4].
In the past few decades, numerous efforts have been undertaken to develop different robotics
courses, some of which are reported in [5–9]. Lessons and experiences gained through these
valuable efforts have also been published in the literature to provide a roadmap for the community
members who plan to offer robotics courses or to develop new ones [10–14]. Although some of
these courses use a commercial robot platform such as Lego Robotics [9, 14], VEX Robotics [15],
Turtlebot [16, 17], etc., others employ a custom-built robot platform using open-source hardware
such as Arduino [18–20] and Raspberry Pi [15, 21]. TheOpen-source Software (OSS) in robotics
courses havemainly been in the form of a software for microcontroller programming or hardware
interface, such as C++ for Arduino, Python for Raspberry Pi, and Robot Operating System (ROS)
as overall robot software framework [17, 22]. In this work, as the second part of a two-part paper,
theOSS such as Python, Java,Modelica, GNUOctave, and Gazebo are used to implement a PID
controller for 2-DOF robot arm simulations. While this robot arm is simple to be implemented in
an undergraduate-level course, it is complex enough to expose the students to more advanced
topics of simulation and control design for nonlinear dynamic systems.
Control Systems have been the cornerstone of many of the technological advancements since
early 20th century. They play a fundamental role in industrial automation, transportation, energy
industry and other emerging areas such as robotics, manufacturing, IoT applications, and cyber-
physical systems. Therefore, majority of related engineering disciplines include several control
courses in their educational curricula. The MRE field, in particular, relies heavily on control
systems as controls can be thought of as joints linking various disciplines involved in the system.
Consequently, MRE students need tomaster the design and implementation of control systems
to be successful in their careers and to be able to design smart and autonomous systems and
processes that will improve human life andwelfare.
Commercial products such asMatlab provide extensive and convenient tools for the design and
implementation of control systems. Although Matlab and its related toolboxes are commonly
available to students in higher education institutions, the students typically lose access to the
complete suite ofMatlab products once they graduate. Moreover, a lot of industries are migrating
towards using theOSS, due to their numerous advantages such as lower ownership costs, higher
flexibility and customizability, improved reliability and accessibility, and wider community support.
Application of the OSS in developing and implementing control algorithms can further expose
the students to the development details of control systems, an aspect that is typically overlooked
when using advanced tools such asMatlab and its toolboxes. Therefore, familiarizing the students
with the application of the OSS for control implementation can equip themwith the skills they
would need in the future.
Asmentioned earlier, the 2-DOF robotmanipulator is considered in this work as a showcase to
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demonstrate the application of theOSS in control implementation and closed-loop simulation. The
dynamics of the robotmanipulators are governed by Euler-Lagrange equations, which result in
nonlinear differential equations. Therefore, the example of a robotmanipulator is a representative
of a larger class of dynamic system. The robot manipulator is assumed to be controlled using a
discrete-time PID controller to follow a pre-defined reference trajectory. The PID controllers
are extensively used in various applications and contribute to majority of industry controllers.
AlthoughmostMRE students get exposed to PID controllers and their design, they seldom get to
implement and tune a PID controller from the ground up. Implementation of PID controllers using
the OSS can familiarize the students with the entire process of the design and implementation.
Furthermore, they would also be prepared for practical implementation of PID controllers as the
OSS can be used onboardMRE hardware. The ultimate goal of this work is to promote the use of
theOSS inMRE education and help with their widespread adoption. TheOSS in this work can be
introduced/used in a wide range ofMRE-related courses, from freshman introductory to senior
and graduate-level advanced courses and even, senior design projects, offered in Mechanical
Engineering, Electrical Engineering,Mechatronics and Robotics Engineering, and Computer Sci-
ence programs. Some of such courses include: introduction to computing/programming, dynamic
systemmodeling, introductory and advanced courses on controls, mechatronics, and robotics, etc.
This paper is organized as follows: Section 2 outlines the dynamics of the 2-DOF robotmanipulator
including the governing Euler-Lagrange equations and the parameters used in simulations. Sec-
tion 3 details the controller implementation and the desired closed-loop behavior. Furthermore,
important code snippets demonstrating the controller implementation using each of theOSS are
given in this section. Finally, Section 4 provides an overview of the capabilities, limitations, and the
potentials of each of theOSS to be used inMRE education.

2 RobotManipulator Case Study
The robot, considered in this work, is a 2-DOF planar arm, as can be seen in Figure 1 below.

Figure 1. Two-link planar robot arm schematics, as illustrated in [23] Fig. 4.4

The Euler-Lagrange equations describing the dynamics of this robot can bewritten as
M(θ) θ̈ + C(θ, θ̇) θ̇ + g(θ) = τ (1)

where θ = [θ1 , θ2]T is the vector of joint angles and the inertia matrix,M, Christoffel matrix,C, andthe gravity vector, g, are

M (θ) =

[
I1 + I2 +m1r1

2 +m2

(
L1

2 + r2
2
)
+ 2m2L1r2cos (θ2) I2 +m2r2

2 +m2L1r2cos (θ2)
I2 +m2r2

2 +m2L1r2cos (θ2) I2 +m2r2
2

]
C
(
θ, θ̇

)
=

[
−m2L1r2sin(θ2)θ̇2 + b1 −m2L1r2sin(θ2)(θ̇1 + θ̇2)

m2L1r2sin(θ2)θ̇1 b2

]
g (θ) =

[
(m1r1 +m2L1)gcos(θ1) + m2r2gcos(θ1 + θ2)

m2r2gcos(θ1 + θ2)

] (2)
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Table 1. Typical DC motor parameters used in simulations.

Parameter L1 L2 r1 r2 m1 m2 g
Value 0.25m 0.25m 0.125m 0.125

m
0.5 kg 0.5 kg 9.81m/s2

Parameter I1 I2 b1 b2Value m1L12/12 m2L22/12 10−1 Nm-s/rad 10−1 Nm-s/rad

The robot links are assumed as slender rods and the parameters chosen for the simulations are
summarized in Table 1 .
Using Denavit-Hartenberg convention, the forward kinematic equations describing the Cartesian
coordinates of the end-effector as functions of individual joint angles can bewritten as

xe = L1cos (θ1) + L2cos (θ1 + θ2)
ye = L1sin (θ1) + L2sin (θ1 + θ2)

(3)

Finally, using a geometric approach, the inverse kinematic equations for this robot will be
xe = L1cos (θ1) + L2cos (θ1 + θ2)
ye = L1sin (θ1) + L2sin (θ1 + θ2)

(4)

It should be noted that Equation 4 corresponds to the elbow-down solution of the inverse kine-
matic problem. The elbow-up solution can be obtained using

θ2 = atan2
(
−
√
1−D2, D

)
θ1 = atan2 (ye, xe) + atan2 (−L2sin (θ2) , L1 + L2cos (θ2))

(5)

where the variable D is defined as
D =

x2e + y2e − L2
1 − L2

2

2L1L2

and can be used to investigate the reachability of the given end-effector coordinates. The atan2
function in Equation 4 and Equation 5 is used to account for the quadrant. Note that the notation
used for this function, i.e. atan2(y, x) is to comply with numerical software packages, which is
different than the notation used in some Robotics textbooks [24].

3 Closed-loop Simulation of the Robot Arm
In this section, the OSS are used to simulate the closed-loop performance of the 2-DOF robot
arm, introduced in Section 2. The robot is assumed to start from an initial state ofθ(0) =
[θ1(0), θ2(0), dθ1/dt(0), dθ2 /dt(0)]T = [π/2, 0, 0, 0]. Forward kinematics in Equation 3
is then used to calculate the cartesian location of the end-effector. Furthermore, it is assumed
that the robot end-effector is to track a reference trajectory. Figure 2 shows the implementa-
tion flowchart of the closed-loop robot simulations used to track the reference trajectory. This
structure, with someminor variations, is followed in all of the introduced software.
The implemented algorithm begins with an initialization stagewherememory allocation occurs
and the robot properties, solver options, desired path characteristics, and controller properties
are specified. Next, the algorithm executes a “for” loop structure that spans the entire simulation
duration. The desired robot trajectory is then generated inside the loop such that the end-effector
follows a linear path from its initial position until it reaches a previously-defined circle, at which
point it dwells and stays fixed for a certain period of time, and then continues to track the circle.
Once the desired position of the end-effector on the reference trajectory is determined, the
required joint angles are calculatedusing the robot inverse kinematics in Equation4 . For simplicity,
the actuator dynamics are ignored and joint torques (assumed to be bounded between -10 and 10
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N.m) are considered as the control inputs. A discrete PID controller is then used to calculate the
joint torques needed to track the desired joint angles and consequently, the desired end-effector
position. Once the actuating torques have been obtained, the robot dynamics are simulated with
anODE solver and the robot joint torques, state history and simulation times are stored.
The code structure here closely follows how a discrete controller is implemented in practice.
Furthermore, PID controllers are extensively used in industry and academia. Therefore, familiar-
ity with PID controller implementation using various OSS can be extremely beneficial forMRE
students and professionals.

Figure 2. The flowchart of the closed-loop robot simulations.

3.1 Python
Considering the nonlinear and coupled nature of the robot dynamics in Equation1 , they are solved
directly using the solve_ivp command from the scipy.integrate library of Python. One possible way
to use this command in simulating the robot dynamics is:
1 for i~in range(len(time)−1):
2 t = time[i]
3 tNext = t + dt
4 state0 = np.squeeze(state[:, i])
5 sol = solve_ivp(model, [t, tNext], state0, dense_output= True

, vectorized= True, args= (exp_dim(tau[:, i]),))
6 state_new = sol.sol(tNext)
7 state = np.column_stack([state, state_new])
8 th_new = exp_dim(np.array([state[0, i+1], state[1, i+1]]))
9 th = np.column_stack([th, th_new])
10 thdot_new = exp_dim(np.array([state[2, i+1], state[3, i+1]]))
11 thdot = np.column_stack([thdot, thdot_new])

Code Snippet 1. Python for Equation 1

It should be noted that the simulation of the robot dynamics is performed iteratively within a
for loop over the entire duration of the simulation, i.e. time seconds, to facilitate the controller
implementation. Therefore, t and tNext are thebeginning andendof one iterationof the simulation
with a step time of dt seconds. The variable state is used to denote the entire state vector of the
robot, i.e.[θ1 , θ2 , dθ1/dt , dθ2 /dt ]T . It is initialized as below before the beginning of the loop:
1 th_init = np.array([[np.pi/2],[0]], dtype = ’float’)
2 thdot_init = np.array([[0],[0]], dtype = ’float’)
3 state0 = np.concatenate((th_init,thdot_init))
4 state = state0

Code Snippet 2.
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The variables θ (denoted by th) and dθ/dt (denoted by thdot) are initialized individually using
the np.array command and then concatenated with the np.concatenate command to form the
initial state vector. It should be noted that the initial state vector should be updatedwithin each
iteration of the loop and hence, the command state0 = np.squeeze(state[:,i]. The reason for using
the squeeze command to generate the initial state vector for integration at each step is the syntax
of the solve_ivp command as it can only accept 1-D arrays.
The callable functionmodel includes the Euler Lagrange equations in Equation 1 represented in a
state-space form:
1 def model(t, x, u):
2 x1, x2, x3, x4 = x
3 th = np.array([x1, x2], dtype = ’float’)
4 thdot = np.array([x3, x4], dtype = ’float’)
5 M_inv = np.linalg.inv(M_mat(th))
6 thddot = np.dot(M_inv,(u−np.dot(C_mat(th, thdot),thdot)−g_mat

(th)))
7 dxdt = [x3, x4, thddot[0,:], thddot[1,:] ]
8 return dxdt

Code Snippet 3.

whereM_mat, C_mat, and g_mat are the systemmatrices in Eq. , defined in separate functions. As
an example, the Christoffel matrix C_mat is defined as:
1 def C_mat(th, thdot):
2 c11 = −m2*L1*r2*np.sin(th[1])*thdot[1]+b1
3 c12 = −m2*L1*r2*np.sin(th[1])*(thdot[0]+thdot[1])
4 c21 = m2*L1*r2*np.sin(th[1])*thdot[0]
5 c22 = b2
6 C = np.array([[c11, c12],[c21, c22]], dtype = ’float’)
7 return C

Code Snippet 4.

One of the main challenges for MRE professionals, especially those more familiar with Matlab,
when using Python for dynamic system simulations is dealing with indices, array indexing, and
array generation within loops. Python lists and array start from an index of 0 as opposed toMatlab
which starts from 1. Another challenge is that Python arrays typically lose a dimension when
indexing. This will be observed when choosing the ith column of the input vector tau to give as
the input to the system at each iteration. The vector tauwill have a dimension (size) of 2× (i+1)
at the ith iteration. Therefore, the expression tau[:, i] should have a dimension of 2× 1, whereas
upon closer investigation, it can be seen that this expression is a 1-D variable with a size of (2, ).
This discrepancy can be problematic in subsequent vector andmatrix operations. Therefore, in
this code, the custom function exp_dim, defined as below, is used to expand the dimensions of the
array.
1 def exp_dim(var):
2 out = np.expand_dims(var, axis = 1)
3 return out

Code Snippet 5.

Another challengewith Python is appending columns to amatrix within each loop iteration. De-
spite being very straightforward inMatlab, this functionality in Python requires commands such
as np.column_stack. Once the state variables are updated at each iteration, the Cartesian position
of the end-effector can be obtained using the forward kinematics (FK_fun)
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1 xe_new, ye_new = FK_fun(th[0, i+1], th[1, i+1])
2 xe_act += [xe_new]
3 ye_act += [ye_new]

Code Snippet 6.

Note that in this code snippet, the expressions xe_act += [xe_new] and ye_act += [ye_new] are used
as a way for creating a list to store the actual end-effector position, another less-straightforward
feature of Python. To be able to use these syntaxes, the lists should be initialized as xe_act = [xe0]
and ye_act = [ye0] where xe0 and ye0 are the initial coordinates of the robot end-effector.
Finally, as mentioned earlier, the control input needed to ensure trajectory tracking is obtained
using a PID controller. This controller is implementedwithin a for loop as below:
1 e = exp_dim(thd[:, i+1]) − exp_dim(th[:, i+1])
2 E += e*dt
3 edot = (e − old_e)/dt
4 tau_new = np.dot(Kp,e) + np.dot(Kd,edot) + np.dot(Ki,E)
5 tau_new [tau_new > 10] = tau_max
6 tau_new [tau_new < −10] = tau_min
7 tau = np.column_stack([tau, tau_new])
8 old_e = e

Code Snippet 7.

where e is the joint angle tracking error, thd is the desired joint angles, E is an approximation of
the error integral, edot is an approximation of the error derivative, tau is the control input, and
tau_max and tau_min are themaximum (+10N.m) andminimum (-10N.m) bounds on the control
input, respectively. The controller parameters, tuned to track the reference trajectory, for the
2-DOF robot considered in this work are:

Kp =

[
20 0
0 20

]
Kd =

[
2 0
0 0.1

]
Ki =

[
40 0
0 40

]
(6)

Figure 3. Desired versus actual joint angles for the 2-DOFrobot.
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Figure 4. Control input for trajectory tracking of the 2-DOF robot.

Figure 5. Desired versus actual trajectory for the 2-DOF robot.

The simulation results of the controller implementation can be seen in Figure 3, Figure 4 and Fig-
ure 5 . The red dotted lines represent desired signalswhereas the blue lines are the actual values of
the signals. The initial transient is because of the instantaneous, rather than gradual, change in the
velocity at the start and end of the profile. The errors along the paths are caused by a combination
of PID gain tuning and how fast the profile is traversed.

3.2 GNUOctave
In Octave, the for loop needed for the simulations is implemented as below:
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1 for i~= 1:numel(time)−1
2 % Current time and state
3 t = time(i); x = state(i,:);
4 tNext = t + dt; %Next simulation time or end of interval
5 % Define Aliases
6 th = x(1:2);
7 % Define desired trajectory
8 if (t <= tdwell)
9 xe_d(i) = (xCirc0 − xe0)/tdwell*t + xe0;
10 ye_d(i) = (yCirc0 − ye0)/tdwell*t + ye0;
11 elseif (t <= tcircle) % Dwell phase
12 xe_d(i) = xCirc0; ye_d(i) = yCirc0;
13 else % start generating circle trajectory
14 xe_d(i) = xc + r*cos(omega*(t−tcircle)); ye_d(i) = yc + r

*sin(omega*(t− tcircle));
15 end
16 % Use Elbow Down Solution, define joint trajectories
17 elbow = 1; % Elbow down Sol
18 thd(i,:) = invK(RR,xe_d(i), ye_d(i),elbow);
19 % Find the control manipulation for joint 1 and joint 2
20 tau1 = theta1_Cntrl.PIDStep(th(1), thd(i,1));
21 tau2 = theta2_Cntrl.PIDStep(th(2), thd(i,2));
22 torque = [tau1;tau2]; % Apply torque to robot
23 [~,state_new]= ode45(@(t,x)RR.model(t,x,torque),[t tNext],x);
24 % save time, state, and robot joint torques
25 torques(i,:) = torque;
26 time(i+1) = tNext;
27 state(i+1,:) = state_new(end,1:4);
28 %save the state at the end of the simulation
29 end

Code Snippet 8.

The variable state is used to denote the entire state vector of the robot, i.e. [θ , dθ/dt]T where θ=
[θ1 , θ2]T and dθ/dt = [dθ1/dt , dθ2 /dt]T for all simulation times. The variables θ, θd, and dθ/dt aredenoted by th, thd, and thdot, respectively.
The instance method model from the user-defined TwoLink object named RR implements the
Euler Lagrange equations in Equation 1 represented in the state-space form. Themodel syntax is:
1 function xdot = model(obj,t,x,u)
2 % Alias
3 th = x(1:2); thdot = x(3:4); torque = u;
4 % Inertia and Christoffel Mat
5 M = M_mat(obj,th); C = C_mat(obj,th,thdot);
6 % Gravity terms
7 G = g_mat(obj,th);
8 % Calculate the generalized accelerations
9 thddot = inv(M) * (torque − C * thdot − G);
10 % Generate the change in the state vector
11 xdot = [thdot;thddot];
12 end

Code Snippet 9.

where obj refers to an instance of the Twolink class, M_mat, C_mat, and g_mat are the system
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matrices in Eq. , defined in separate functions. As an example, the Christoffel matrix C_mat is
defined as:
1 function C = C_mat(obj,th,thdot)
2 % Calculate the Christoffel matrix
3 k = obj.bet*sin(th(2));
4 C11 = −k*thdot(2) + obj.b1; C12 = −k*(thdot(1) + thdot(2));
5 C21 = k*thdot(1); C22 = obj.b2;
6 C = [C11 C12;C21 C22];
7 end

Code Snippet 10.

Finally, as previouslymentioned, the control input needed to ensure trajectory tracking is obtained
using a PID controller on each of the robot joints as below:
1 % Find the control manipulation for joint 1 and joint 2
2 tau1 = theta1_Cntrl.PIDStep(th(1), thd(i,1));
3 tau2 = theta2_Cntrl.PIDStep(th(2), thd(i,2));

Code Snippet 11.

where the PIDController objects theta1_Cntrl and theta2_Cntrl evaluate the instance method
PIDStep to compute the torque needed at the start of the simulation interval to ensure good
tracking. The PIDStepmethod is implemented as:
1 function u~= PIDStep(obj,procVar, setPoint)
2 % Calculate error, error integral, and error derivative
3 obj.err = setPoint − procVar;
4 Err = obj.err * obj.dt;
5 errDot = (obj.err − obj.old_err) / obj.dt;
6 % Compute P, I~and D contributions
7 obj.pTerm = obj.kp * obj.err;
8 obj.iTerm = obj.iTerm0 + obj.ki*Err;
9 obj.dTerm = obj.kd * errDot;
10 % Control Law
11 u~= obj.pTerm + obj.iTerm + obj.dTerm;
12 % Saturate the controller output value if exceeds limits
13 if((u > obj.uMax) || (u < obj.uMin))
14 if (u > obj.uMax), u~= obj.uMax;
15 else, u~= obj.uMin; end %(uTrial < obj.uMin)
16 end
17 % update the integrator initial value
18 obj.iTerm0 = obj.iTerm;
19 obj.old_err = obj.err; % Update previous error value
20 end

Code Snippet 12.

where obj is an instance of the PIDController class, procVar is the process variable, setPoint is the
desired set point, dt is the sample time, err is the tracking error, Err is an approximation of the
error integral, errDot is an approximation of the error derivative, u is the control input and uMin
and uMax are the lower and upper bounds on the control input. The controller input bounds along
with the controller parameters are chosen as before. In the Octave implementation, an object-
oriented programming approachwas implemented to keep themain program simple and tomake
the programmodular. The simulation results are similar to the results presented in Subsection 3.1.
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3.3 Modelica
3.3.1 EquationMode

The equations for the two-link robot are inmatrix form so this problem takes advantage ofMod-
elica’s matrix facilities. The state variables are the two joint angles and the two joint angular
velocities which are defined as:
1 SI.Angle[2] theta(start={90*Constants.D2R, −90*Constants.D2R});
2 SI.AngularVelocity[2] omega(start = {0.0, 0.0});

Code Snippet 13.

whereD2R is the conversion factor from degrees to radians. As before, the start values are the
system initial conditions. TheM, C andGmatrices are defined as:
1 Real[2, 2] M "mass matrix";
2 Real[2, 2] C "Christoffel matrix";
3 Real[2] G "Gravity term";

Code Snippet 14.

The equation section includes the basic matrix equations and the term-by-term computation of
the elements of the matrices (these depend on the angles and angular velocities so cannot be
treated as constants)
1 M * der(omega) + C * omega + G = tau;
2 der(theta) = omega;
3 // Mass matrix
4 M[1, 1] = alpha + 2.0 * beta * cos(theta[2]);
5 M[1, 2] = delta + beta * cos(theta[2]);
6 M[2, 1] = M[1, 2];
7 M[2, 2] = delta;
8 // Christoffel matrix
9 C[1, 1] = (−beta * sin(theta[2]) * omega[2]) + b1;
10 C[1, 2] = −beta * sin(theta[2]) * (omega[1] + omega[2]);
11 C[2, 1] = beta * sin(theta[2]) * omega[1];
12 C[2, 2] = b2;
13 // Gravity
14 G[1] = (m1 * r1 + m2 * L1) * g * cos(theta[1]) + m2 *
15 r2 * g * cos(theta[1] + theta[2]);
16 G[2] = m2 * r2 * g * cos(theta[1] + theta[2]);

Code Snippet 15.

Note that the first equationmakes very clear that these are equations and not computing state-
ments.
Two different methods of implementing feedback control are used in theModelica: one case used
an external C function for the PID control and the other used an internalModelica class. All the
feedback control was implemented as discrete-time control corresponding to typical computer-
based control.
The control in this model was implemented using an external C languagemodule. This shows how
straightforward it is to interface C codewithModelica models.
To connect to a function in C, a function declaration is made in the first (definitions) section of the
Modelica code:
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1 function PIDCinit
2 input Integer loopID;
3 input Real dt, kp, ki, kd, loLim, hiLim;
4 output Integer ip "Index for this control loop −− should be

same as loopID input";
5 external "C" ip = PIDCinit(loopID, dt, kp, ki, kd, loLim, hiLim

);
6 annotation(
7 Include = "#include \"c:\\Users\\x\\Documents\\AAAA−Stuff\\AAAA−

Working\\Modelica Projects\\TwoLinkRobot\\PID_C.c\"");
8 end PIDCinit;

Code Snippet 16.

and
1 function PIDCstep
2 input Integer ip;
3 input Real val, setpoint "process value and setpoint";
4 output Real mVal "Actuation (manipulated) variable output";
5 external "C" mVal = PIDCstep(ip, val, setpoint);
6 end PIDCstep;

Code Snippet 17.

for the initialization function and the function that operates each sample time. The downside
of this facility is that the link to the C-file must be done using a fully qualified path, making the
program no longer portable.
The control function can be called explicitly in the ‘algorithm’ section of theModelica program. This
section allows for algorithmic statements (that is, ordinary computing statements, conditionals,
etc.). In this case, a sample-time, discrete control is setup by using a ‘when’ loop with sampling
algorithm:
1 algorithm
2 when sample(0.0, dt) then
3 ...
4 cmd1 := PIDCstep(loopID1, theta[1], theta1Set);
5 cmd2 := PIDCstep(loopID2, theta[2], theta2Set);
6 end when;

Code Snippet 18.

The use of := for these algorithmic statements distinguishes them from equation statements which
use the = sign.
Asmentioned earlier, the path for the robot end-effector to take is broken into three parts:
1. move fromthe initial robotposition (normally straight up) to thebeginningof the “production”
path,

2. hold (dwell) briefly at that position, and
3. follow a circular path.

The code to do this is in the algorithm sectionwhere the three dots (. . . ) are, above. The inverse
kinematics is coded, also as an algorithm, in a separate function, InvKin().
The path following code is:
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1 // First do the supervisory control (compute path setpoints)
2 tTraj := time − tSetup;
3 if time < (tSetup − tHold) then
4 // Move to start of circle
5 xTraj := (time / ((tSetup − tHold) + 1.0e−6)) * (x0 − xe0) +

xe0;
6 yTraj := (time / ((tSetup − tHold) + 1.0e−6)) * (y0 −ye0) +

ye0;
7 (theta1Set, theta2Set) := InvKin(xTraj, yTraj, L1, L2);
8 omegaTraj := 0.0;
9 elseif time < tSetup then
10 // Hold position (dwell)
11 (theta1Set, theta2Set) := InvKin(x0, y0, L1, L2);
12 xTraj := x0;
13 yTraj := y0;
14 omegaTraj := 0.0;
15 else
16 // Draw circle
17 omegaTraj := omegaTraj0;
18 xTraj := radTraj * cos(omegaTraj * tTraj) + xCenter;
19 yTraj := radTraj * sin(omegaTraj * tTraj) + yCenter; (

theta1Set, theta2Set) := InvKin(xTraj, yTraj, L1, L2);
20 end if;

Code Snippet 19.
This simulation results are identical to the results presented in Subsection 3.1.
3.3.2 Graphical ModelingMode

The double pendulum/two-link robot ismade up of revolute joints and rigid body objects. Although
this problem is posed as a two-dimensional problem (the equation-mode solutions use the two-
dimensional solution), this model is actually a full three-dimensional model. By fixing the first
revolute joint to amechanical ground, it can onlymove in two-dimensions but, if instead it were
attached to amoving object, such as a turntable, the three-dimensional dynamics would be fully
accounted for. Themodel for the two-link robot is shown in Figure 6 .

Figure 6. The 2-DOF robot (double pendulum) model in Modelica.

The initial condition for the arm is pointing straight up, i.e. joint 1 at 90◦ and joint 2 at 0◦ , as can be
seen in Figure 7 .
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Figure 7. Initial configuration of the 2-DOF robot arm drawn in Modelica.
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OpenModelica includes animation capabilities for mechanical system simulations. The animation
for this problem can be found at the GitHub repository for the paper [25].
TheModelica model done in graphical mode uses a different means to implement the PID control.
In this case, a Modelica class is defined for the PID. The algorithm is implemented in the same
algorithm-when-sample structure used above:
1 algorithm
2 when sample(0.0, dt) then
3 preErr := err;
4 err := sp − y;
5 integ := integ + ki * err * dt;
6 deriv := kd * (err − preErr) / dt;
7 m := kp * err + integ + deriv;
8 m := max(m, loLim) "Output saturation limits";
9 m := min(m, hiLim);
10 end when;

Code Snippet 20.
The wrinkle here is that this executes autonomously under internal control of Modelica. The
‘sample’ function sets up an internal event that is controlled by theModelica executionmodule.
The PID objects are defined in the ordinarymanner:
1 PID pid1(kp = 30.0, ki = 10.0, kd = 0.5, loLim = −10.0, hiLim =

10.0, dt = 0.005) "Controllers −− PID on angle";
2 PID pid2(kp = 30.0, ki = 10.0, kd = 0.5, loLim = −10.0, hiLim =

10.0, dt = 0.005);

Code Snippet 21.
But the question is how to get data to/from then at the proper times. Modelica does have some
synchronization facilities, but a simpler, although probably less efficient, manner was chosen
here: put all of the interactions with the controller into the equation section, which operates
“continuously”
1 pid1.sp = theta1Set;
2 pid1.y = Revolute1.angle;
3 torque1.tau = pid1.m;
4 pid2.sp = theta2Set;
5 pid2.y = Revolute2.angle;
6 torque2.tau = pid2.m;

Code Snippet 22.
This assures that the controller has themost up-to-date input data (setpoint and process value)
and the system simulation has themost up-to-date controller output (torque command).
The supervisory code for path generation is almost the same as the code used above, except that it
too operates in the ‘equation’ section.
This case produces the same result as above, but also generates an animation, which can be found
at [25].

3.4 Java
As noted above, the two-link robot equations are best re-organized for use by conventional ODE
solvers. That version of the equations isolates the derivatives by inverting the ‘M’ matrix (which is
2×2, so easily inverted explicitly). This program is structured in the sameway as the DCmotor
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program, so the only section of interest is the ComputeDerivates() section. Java does not have
any built-in support for matrices. Althoughmatrix packages do exist, for this problem thematrix
manipulations were written out explicitly (again, themaximummatrix size is 2×2). WARNING: in
viewing this code note that in thematrix computations Java uses base-0 indexing whileModelica
(and standardmatrix notation) uses base-1 indexing. The computation of derivatives thus looks
like
1 public double[] computeDerivatives(double t, double[] x)
2 {
3 theta[0] = x[0]; // Copy state variables to local variables
4 theta[1] = x[1];
5 ComputePositions();
6 omega[0] = x[2];
7 omega[1] = x[3];
8 dxdt[0] = omega[0]; // d theta/dt = omega
9 dxdt[1] = omega[1];
10 // Be careful of the comparison of equations here −− Java

uses 0−based indexing
11 // while Modelica uses 1−based indexing!!
12 // Mass matrix
13 M[0][0] = alpha + 2.0 * beta * Math.cos(theta[1]);
14 // m(1,1), etc.!
15 M[0][1] = delta + beta * Math.cos(theta[1]);
16 M[1][0] = M[0][1];
17 M[1][1] = delta;
18 // Christoffel matrix
19 C[0][0] = −beta * Math.sin(theta[1]) * omega[1] + b1;
20 C[0][1] = −beta * Math.sin(theta[1]) * (omega[0] + omega[1]);
21 C[1][0] = beta * Math.sin(theta[1]) * omega[0];
22 C[1][1] = b2;
23 // Gravity
24 G[0] = (m1 * r1 + m2 * L1) * g * Math.cos(theta[0]) + m2 * r2

* g * Math.cos(theta[0] + theta[1]);
25 G[1] = m2 * r2 * g * Math.cos(theta[0] + theta[1]);
26 // Torques
27 tau[0] = cmd[0];
28 tau[1] = cmd[1];
29 double detM = M[0][0] * M[1][1] − M[0][1] * M[1][0];
30 dxdt[2] = (M[0][1] * (G[1] − tau[1] + C[1][0] * omega[0] + C

[1][1] * omega[1]) −
31 M[1][1] * (G[0] − tau[0] + C[0][0] * omega[0] + C[0][1] *

omega[1])) / detM;
32 dxdt[3] = (M[1][0] * (G[0] − tau[0] + C[0][0] * omega[0] + C

[0][1] * omega[1]) −
33 M[0][0] * (G[1] − tau[1] + C[1][0] * omega[0] + C[1][1] *

omega[1])) / detM;
34 return dxdt;
35 }

Code Snippet 23.

The Java solution uses almost the same code as theModelica solutions for PID control and for the
path (supervisory) setpoint generation. The PID control is implemented as a full Java class, which
makes it easier to work with than the equivalent solutions inModelica. Otherwise, examination of
the Java code shows very similar code sections to theModelica code and, of course, produces the
same result. Gnuplot is used for plotting and the corresponding script is included in the GitHub
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repository [25].

3.5 Gazebo/ROS
Gazebo is the default simulator used by Robot Operating System (ROS) developers both in
academia and industry for simulation-based prototyping and evaluation. This is because Gazebo
was designedwith a robust integration to the ROS framework - enabling easy communication in-
terface using standard ROSmethods such as topics and services [26]. Within the ROS framework,
Gazebo can be used as a nodewhich handles the physics-based interaction between rigid-bodies
and the environment, as well as sensors, etc. In this section, the robot modeling, control, and ROS
communication specifics to achieve the desired task for the two-DOF robot are discussed.
3.5.1 RobotModeling

Robotmodels in Gazebo are defined by a tree structure of interconnected rigid bodies. The rigid
body parameters are defined using XML-based formats such as Simulation Description Format
(SDF) or Unified Robot Description Format (URDF). The URDF is native to ROS and thus is the
more prominent of the two formats when operating in the ROS framework. The URDF provides
definitions for the robot links (inertial properties, collision and visual properties), joints (kinematic
and dynamic properties), transmission and, with addedGazebo tags, control plugins and geometric
materials.
To create a newmodel, Gazebo provides amodel editor which offers simple geometric shapes such
as cylinders, spheres and cubes. Onemay compose themodel graphically using themodel editor
or programmatically using the URDF. Gazebo also allows for custom 3Dmeshes to be imported.
In this work, the two-link robot model (with a stand) was created in URDF using Gazebo-defined
cylindrical shapes (see Figure 8 ) following the parameters defined in ?? .
3.5.2 Robot Control

Themost commonway of implementing closed-loop control of a robot model in the Gazebo-ROS
environment is via the ROSControl package [27]. The ROSControl package is a set of controller
plugins which processes joint state data and desired input data to determine expected output
for actuation. The package provides various types of controllers: effort-based, position-based,
velocity-based, state controller, etc. In this work, two types of effort-based controllers and one
state controller are used for the task:
1. effort_controllers/JointPositionController: tracks individually commanded joint positions.
2. effort_controller/JointTrajectoryController: tracks commanded joint trajectories.
3. joint_state_controller/JointStateController: publishes the states of all joints in themodel.

The effort-based controllers compute desired forces/torques to joints based on state of themodel
and desired behavior. These controllers are PID-based and their parameters are defined in a
control configuration file.
3.5.3 Framework for simulating the trajectory tracking task

As described above, ROS operates using a node framework where each node is a distinct software
program or process, communicating information (messages) with other nodes via topics. In this
paper, five active nodes are adopted as graphically illustrated in Figure 9 These nodes include
1. Gazebo simulator (/gazebo): In ROS, the gazebo simulator is spawned as a node which
handles all the processes of physics rendering, visualization, etc. This is an existing node in
this framework. The created model (defined in an URDF file) is spawned in this simulator
and interacts with its environment. The /gazebo node subscribes to controller commands to
actuate the robot model and then publishes the state of the entire simulation, especially the
robot states (/joint_states) continuously in simulation time.
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Figure 8. Two-DOF robot model spawned in Gazebo.

2. Circle-drawing program (/draw_circle): This is a custom nodewritten by the authors which
follows the pseudo code in Subsection 3.5.4. The /draw_circle node iswritten in Python using
the rospy package. It essentially initializes the circle parameters, computes the joint position
or joint trajectory to track (using inverse kinematics) and publishes this as desired input to
the respective controller command topics Robot state publisher (/robot_state_publisher):
This is an existing ROS nodewhich processes robot joint states to determine robot link/joint
frame transformations. Thus, it publishes the robot frame transformation data on a topic
called /tf [28].

3. Data recording program (/data_recorder): This is a programwritten to read robot data (joint
states from /joint_states and robot link pose/transform from /tf) and arrange them into a
convenient array for post-simulation analysis and storage. This node then publishes the
arranged data onto a custom topic called /data_log.

4. Record data (/rosbag_record): This is a common existing tool which enables convenient
recording and storage of data available in the ROS communication pipeline in a unique file
called a rosbag [29].
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3.5.4 Draw_circle pseudo code

1. Initialize the ROS node, subscribers and publisher objects
2. Initialize the circle parameters (radius, starting pos, durations: N1, N2
3. Compute the joint configuration (q_init for the circle starting position
4. Publish q_init to the joint_position_controller_command topic
5. Wait N1 seconds
6. Switch controller to a joint_position_controller to a joint_trajectory_controller
7. Compute the joint trajectory (q_traj for completing the circular path
8. Publish q_traj to the joint_trajectory_controller
9. Wait N2 seconds
10. End

Figure 9. 9. Schematic of the interconnections between ROS nodes and topics.

4 Discussions
This two-part paper demonstrates the use of theOSS such as Python, GNUOctave,Modelica, Java,
and Gazebo in the context ofMRE educationwith some simulation showcases. These software
offer numerous advantages such as free accessibility, customizability, wide online community
support, etc. However, each of these platforms also has its own limitations and challenges. This
section reviews some of the potentials and challenges of these software in the context of the
problems introduced in this paper. Other challenges facing the applications of theOSS are listed
in Part I of this paper, as documented through feedback from the community members. The goal
of the paper is that the application showcases and review of the potentials and limitations of each
OSS could allowMRE educators to make an informed judgment about the choice of a suitable
software for their courses and consequently, facilitate a wider adoption of these software.
Python is a general-purpose programming languagewhich is increasingly being used in various
applications and industries and therefore, familiarizing students with Python programming can
open up a lot of future opportunities for them. Python also has a large online support community
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which can be helpful for troubleshooting and debugging purposes. Despite the community shift
towards use of Python 3, there are still some packages and applications, written/compatible with
Python 2, which can cause confusion. As for developing and executing Python programs, although
a combination of a text editor and command prompt can be used, freely available Integrated
Development Environments (IDEs) such as Spyder [30] could provide a more straightforward
interface for Python beginners. Installing Python packages could also be challenging at times. As
an example, the easiest way to install and integrate Python Control Systems library with Spyder
onWindows is through ‘pip’, despite variousmethods proposed online and outlined at [31]. The
choice of other operating systems could further complicate these issues. As for the application of
Python in the context ofMRE, Python Control System library andMatlab compatibility module
can ease entry into using Python; however, there are still some discrepancies when it comes to
generating, indexing, and slicing arrays andmatrices andworking with themwithin loops. Online
tutorials and articles written byMRE professionals, such as this paper, could help bridge the gap
between Python and Matlab. As for data visualization, although Python plots generated with
matplotlib might not be as interactive asMatlab plots, thematplotlib library provides numerous
options for customizing plots. In summary, Python and the vast collection of its packages would be
feasible and beneficial solutions to integrate inMRE education.
Themain advantage of using Octave is that it has strong compatibility withMATLABwhich allows
for greater portability and sharing of programs between the two platforms and nearly eliminates
the time required to learn to use Octave with priorMATLAB experience. The open-source nature
and availability of the source code also allows tinkerers to experiment, customize, and develop
different features. Another advantage of Octave is that it allows for C-style auto-increment and
assignment operators like i++ and ++i. It also allows for exponentiation using ^ and **. However,
sinceOctave is not a commercial product it does not yet have all the same built-in functionality
and toolbox capabilities asMATLAB, due to the resource and funding limitations. An example of
this is the lack of LaTeX support to display equations on plots. Octave, however, does support a
subset of TeX functionality which allows for the display of Greek characters, special glyphs, and
mathematical symbols. Despite the existence of Octave Control package, it misses functionalities
such as controlSystemDesigner (previously known as SISO tool) for control system design and
analysis. Furthermore, Octave’s user interface and debugging tools are not as mature as MAT-
LAB’s. Another limitation of Octave is that it does not have a Simulink environment or a graphical
programming environment for simulating and analyzingmulti-domain dynamical systems.
The enormous advantage in using Modelica is its focus on physical systems including a large
number of libraries for simulating systems containing several energymedia. For theMREworld,
the core library is theMultibodyMechanics library. This library does three-dimensional, rigid-body
dynamics, which, when combined with the Rotational Mechanics and Translational Mechanics
libraries, canbeused tomodel awidevariety ofmechanical systems. TheElectrical,Magnetic, Fluid,
and Thermal libraries can interact with theMechanics libraries to allow simulation of complete
systems. In the examples above, the DCmotor uses a combination of the Electrical and Rotational
Mechanics libraries and the two-link robot uses theMultibody and Rotational libraries. Themajor
disadvantages of Modelica are that it is an entirely different syntax and methodology to learn
and its execution times can be slow. For example, there is a noticeable compile time for a small
problem inOpenModelica as compared to a compile time that is too short to notice for Java. An
institutional advantage to usingModelica is that while educational institutions can very effectively
use the open-source OpenModelica version, students entering industry and research labs will
often be able to easily transfer their skills to one of the commercial versions.
Java offers the opportunity of a well-structured object-oriented language with efficient execution
and very good portability properties. These properties can be used to advantage when dealing
with large, complex problems. The obvious disadvantage is that Java is a full-blown programming
language so is most useful to people who spend a good part of their lives doing programming.
Java does not have native support for advanced numerical mathematics, but packages such as
Hipparchus, as used in the above examples, fill that gap nicely.
Compared to other platforms described above, Gazebo providesMRE instructors and students an
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avenue to evaluate the integration of a full-fledged robot system in simulation: from prototyping
controllers, to simulating virtual actuators and sensors on a realistic virtual model of the physical
robot. The level of abstraction enables students to learn about how integrated robot systems
are designed in the real world. Gazebo is particularly well suited for this because of its native
compatibility with ROSwhich is the most widely used middleware for robotics in research and
industry. However, instructors and students new to robotics may genuinely struggle with the
existing high technical overhead required to effectively use the software. For instance, Gazebo
(integrally operated with ROS) most commonly operates on LinuxOS (although Gazebo supports
Windows)whichmay be less familiar especially to students. Also, althoughGazebo providesmodel
editors to create andmodify simple robotmodels using a GUI, users often require knowledge of
SDF and URDF to work withmore complex robot models. This may also be a challenge for novice
students and instructors.

5 Summary, Conclusions, and FutureWork
This paper is the second part of the study focused on promoting the application of the OSS inMRE
education. In this paper, a 2-DOF robot arm is used as a showcase to demonstrate the application
of theOSS in the implementation of a PID controller to achieve trajectory tracking for the robot
end-effector. Design and implementation of PID controllers are skills that everyMRE graduate
shouldmaster which, as shown in this paper, can easily be achievedwith theOSS. Furthermore,
such implementation can also expose the students to the development details of closed-loop
control systems. Important code snippets are given and discussed in the paper and the full scripts
aremade available on the Github repository of the paper along withMatlab scripts, intended to
serve as a point of comparison. This two-part paper can provide a comprehensive guide for the
utilization of various OSS in simulation, analysis, and control design and implementation ofMRE
systems. MRE students, instructors, and professionals could choose one ormore sections of this
paper to learn the application of their software of choice in the design and development ofMRE
systems. This paper and similar works fromMRE professionals can further promote the use of
these software and enable theMRE community to reap the numerous benefits of theOSS.
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