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Abstract 

 

The wide availability of simulation software, 

such as MAPLE®, has made it possible to 

significantly enhance the teaching of courses in 

mechanics. More challenging problems, usually 

non-linear, can be introduced which previously 

could not be treated because of the lack of 

analytic solutions. By means of numerical 

solutions to these problems, students can get a 

feel for finite difference approaches and, 

perhaps more importantly, their physical 

understanding can be enhanced and new 

phenomena explored. The following examples 

are presented with the underlying equations cast, 

as much as possible, into non-dimensional form: 

(i) a finite difference scheme involving a non- 

linear pendulum subjected to distinct initial 

conditions, showing that the period depends on 

the amplitude; (ii) a simple pendulum on an 

oscillating support, illustrating parametric 

resonance; and (iii) forced harmonic motion of a 

non-linear hardening spring-mass system, 

illustrating the jump phenomena. 

 

Introduction 

 

The use of software as a teaching aid in 

undergraduate mechanical engineering courses 

has been discussed by several authors. A 

common type used is mathematics software 

which allows for a wide range of applications 

from basic to advanced engineering courses. 

MATLAB®[1], MATHCAD® [2] and MAPLE® 

[3] are some common examples. 

 

In a previous paper[4] the author discussed his 

experiences on using commercially available 

simulation software for dynamics teaching and 

improving learning. This was done using MSC 

ADAMS®[5] for rigid body dynamics. Feedback 

from students showed that simulations can help 

visualization and understanding of mechanical 

systems dynamics. 

 

There are numerous papers on the use of 

software in engineering undergraduate courses. 

For example in reference[6] Gharghouri 

discusses his experiences on using MAPLE® for 

teaching a numerical analysis course. An 

approach to calculate eigenvalues and 

eigenvectors for a mechanical vibrations course 

is given and possible advantages of using the 

software as opposed to programming languages 

is discussed. It was concluded that the use of the 

software greatly enhanced the delivery of the 

course. 

 

Another example of a positive use of 

MAPLE® as a teaching aid can be found in 

reference[7] where Gerber discusses how the 

software aided in teaching circuits and systems. 

 

In this paper a couple of examples developed 

utilizing MAPLE® are presented. The goal is to 

improve student understanding of mechanical 

vibrations and dynamics by investigating non- 

linear physical phenomena and resonance with 

the aid of the software. 

 

MAPLE® Examples 

 

Finite difference scheme – simple pendulum 

 

In the following examples solutions are 

obtained using a MAPLE® finite difference 

scheme. The algorithm utilized for the 

numerical integrations is a Fehlberg fourth-fifth 

order Runge-Kutta. 

 

To give students some sense of a finite 

difference process, an example problem is 

solved using Euler’s method (see, for example, 

reference[8]). 



2 COMPUTERS IN EDUCATION JOURNAL  

Consider the first order differential equation: 
 

dy(t) 
 K 

dt 
y(t)  f (t) 

 

 

 
(1) 

 

In the Euler’s method, the time range of 

interest is divided into uniform intervals of 

magnitude h . 
 

Starting   at   some   time t0 ,   the   value   of 

y(t0  h) can be approximated by the value of 

y(t0 ) plus the time step h multiplied by the 

slope of the function, which is the derivative of 

Figure 1. Finite difference scheme – 

Euler’s method. 

y(t) (this is   simply   a   first   order   Taylor 

expansion): 

 

y(t  h)  y(t )  h 
0 0 

t t0 

 

 

 
Then, by calculating the value of 

 

 
dy(t)  

dt 

(2) 

 
at 

time t0 (using equation (1)), an approximation 

for the value of y at time t0  h can be obtained 

using equation (2). 

 

The process can then be repeated to generate 

an approximate solution for the equation. This is 

shown graphically for a single process iteration 

in Figure 1. 

 
Next consider the motion of a simple 

 

 
Figure 2. Simple pendulum. 

 
 

The equation of motion is: 

pendulum (see Figure 2). d 
2

dt
2
 

 
g 

sin( )  0 
L 

 

 
 

(3) 

dy(t) 

dt 
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where   g is the gravitational constant, L is the  d1( ) d  2 ( ) 
length of the pendulum and  is an angular 


d ( ) d   ( ) 

coordinate. Noting that has dimensions 
 2 1  

(6) 
of frequency, one can introduce the 

dimensionless time:   ( g L )t , so that where 1( )   ( ) and 2 ( )  d ( ) d . 

d dt  (d d )(d dt)  ( g L )(d d ) .  
The approach leads to: 

Then equation (3) becomes: 
1(i 1)  1(i)  h(2 (i)) 

2 

 (i 1)   (i)  h( (i)) 

d 

d 2 

 sin( )  0 
 2 2 1  

(7) 

(4) 
 

A common assumption, utilized when 

discussing this problem in a classroom, is to 

assume     small     oscillations     (  10∘ ,     so 

sin( )   ). In this case, equation (4) is linear 

and the dimensionless period is, regardless of 

initial amplitude, TL  2 . The equation 

becomes: 

Taking h  0.01 , the numerical solution is 

plotted together with the exact solution in Figure 

3 (see MAPLE® worksheet in the appendix). 

 

d 
2

d 2 

   0 

 

 

 
(5) 

 

which has a general solution of the 

form: C1 sin( )  C2 cos( ) . The constant values 

C1 and C2 depend on the initial conditions. 

 
Consider, initially, the following set of initial 

conditions:  (0)  4.5∘ and d d (0)  0 . 

Then the exact solution for equation (5) is: 

0.07853cos   . 

Next, a numerical solution for the equation is 

 

Figure 3. Comparison: Euler’s method 

versus exact solution. 

obtained using Euler’s method. Equation (5) is a 

second order differential equation, therefore, in 

order to apply the method, it is written as a 

system of first-order equations: 

As it can be seen, excellent agreement is 

obtained. 

g  L 

Exact solution 

Approximate solution 
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The example illustrates how a finite difference 

scheme can be applied to solve a differential 

equation. Students should realize that numerical 

schemes can also be used to solve non-linear 

equations, which may not have closed-form 

solutions. Thus a deeper insight into the physics 

of these problems can be obtained by this 

approach. 

 

For example, consider another set of initial 

conditions:    (0)  45∘   and   d  d  (0)  0 .  In 

this case the initial angle is not small and the 

previous assumption that led to a linear equation 

does not apply anymore. Equation (4) must be 

used instead. With the aid of MAPLE® the 

equation can be solved numerically for this and 

any other set of initial conditions (the default 

Runge-Kutta solver is used in the following). 

It can be seen that the period for “large” 

response is distinctly different from the “small” 

one, showing the dependence of the period on 

the initial condition. Students should note that 

for a non-linear system the period is not a 

system characteristic. It depends on the initial 

amplitude. (Unlike the period of the linear 

equation, which, independent of the initial 

conditions, is always 2 ). 

 

These results can be explained intuitively as 

follows. In the range 0     2 ,  is greater 

than sin( ) . Hence the effective restoring force 

in the non-linear case is less than that in the 

linear case. The motion slows down; the period 

is larger. 

 

Motion of a pendulum on an oscillating 

support 
 

Resonances other than forced motion ones can 

be illustrated with the following example. 

 

Consider the motion of a pendulum which is 

connected to a support that undergoes a 

harmonic translational motion. The pendulum is 

subjected to gravity and to a viscous damping 

moment at the support ( cl
2 

d dt ). The 

amplitude of the translational motion and its 

frequency are prescribed, ql and  , 

 

 

 

 

 

 

 

 
 

Figure 4. Non-linear response for small and 

large initial angles. 

 

Figure 4 shows the numerical solution of 

equation (4) for the two sets of initial conditions 

mentioned above: small and large initial angles. 

respectively. The system is shown in Figure 5. 

 

 

Figure 5. Pendulum on an oscillating support. 

Non linear response: 

large angle 

Non-linear response: 

small angle 
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g 
l 



Derivation of the equation of motion may be 

accomplished by using a reference frame 

translating with u . An observer in that frame 

Equation (9) is a damped Mathieu-Hill [9] 

equation. Students should be made aware that, 

although the system is homogeneous, with no 

sees the mass m undergoing circular motion. apparent forcing function, there are situations 

Then it can be seen that the acceleration of the 

end mass is given by: 

a
→ 
 (u&&cos( )  l&2 

)n
→ 
 (u&&sin( )  l& )t 

when the response of this type of system can be 

unstable. This is due to the presence of the time- 

dependent coefficient in the equation. It can be 

shown that the coefficient frequencies that will 

cause instabilities are related to the undamped 
 where 

→ 
and 

→ 
are unit vectors directed along natural frequency of the system by   2n     j , 

n t j  1, 2,3... ( where n is the non-dimensional 
the normal and tangential directions to the 

circular motion, respectively. 
undamped natural frequency, see reference [9] 

for more details). Note that here 

Using  Ft  mat leads to: n   1, then the condition becomes 

mg sin( )  Rt    m(u&&sin( )  l&&) where R t   is 
  2 j , j  1, 2,3... . 

the pin reaction force along  t
→ 

. Taking moments When this is satisfied, a so-called “parametric 
about the center of mass (here the end point 
mass) leads to:  R l  cl 

2&  0 . resonance” is possible. For j  1 the condition 

t 

 

 

Solving this equation for Rt     and substituting 

leads to the primary parametric resonance at 

  2 . This is different from a forced resonance 

condition, where a resonance is expected when 

into the previous one leads to the equation of 

motion: 

the frequency of the forcing function approaches 

the natural frequency of the system (  1 not 

  2 ). This parametric instability is verified 

c 1 numerically in the following (MAPLE® 

&&  
m 
&  

l 
(g  u&&)sin( )  0 

 

 
(8) 

worksheet given in the appendix). 

 
Figure 6 shows the response for the following 

parameters: (0)  0.1rad , d (0) d  0 , q  0.2 
After substituting the function for the 

harmonic translation and assuming small 

pendulum oscillations ( sin( )   ), a non- 

dimensional version of equation (8) can be 

written as: 

, C1  0.01 and   2.0 which, as mentioned 

above, is expected to lead to unstable response. 

The numerical simulation shows an exponential 

growth   of   the   response   and,   consequently, 
instability. Figure 7 shows the numerically 

obtained response for the following parameters: 
d 

2 dC  (1 2 
q cos( ))  0 

 
  

 (0)  0.1rad , d (0) d  0 , q  0.2 and 

d 2 
1 

d 
(9) 

  1.6 . In this case the condition for 

parametric instability is not satisfied and no 

resonance is expected. This is confirmed by the 

where the following non-dimensional 

coefficients were employed: 

response shown in the figure. 

 

   t ,  2  , C 
 c 

 m , 
   


0 0 1 

0 0 

(g  l) 2 

0 
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2

 
 

 

Figure 6. Pendulum response to initial 

conditions – unstable. 

Figure 8.  Pendulum stability boundaries. 
 

The primary instability zone ( j  1 ) for the 

pendulum system is given in Figure 8 (using the 

same numerical values as before). When the 

system parameters q and    lead to a point 

falling inside the “unstable region” the response 

to small disturbances will be unstable. Note that 

the unstable response obtained above is for the 

point q  0.2 and   2.0 , which can be seen to 

 

 
Figure 7. Pendulum response to initial 

conditions – stable. 

 
There are several approaches to investigating 

the conditions that drive parametric systems 
unstable. Their discussion is beyond this text. 
Nevertheless, a simple approach, known as 
Hill’s infinite determinant [9], is shown here. 
This approach can lead to the “boundaries” of 
the instability zones in the space defined by the 

parameters  versus q . Students can verify, 

numerically, whether the response of the system 

to initial conditions is stable or not (and confirm 

the predictions given by the approach). 

fall inside the unstable region. On the other 

hand, the stable response is for a point falling in 

the stable region ( q  0.2 and   1.6 ). 

 
Damping does play a role here and enough 

damping could stabilize an “unstable condition” 

(the instability zone moves off the  axis). 

 

Harmonic motion of a hardening spring- 

damper-mass system 

 

An important consequence of non-linearity can 

be illustrated with the following example. The 

equation of motion for a spring-damper-mass 

system with a hardening spring is given by: 

d 2 x 
 

dx 
  

  2 x  k1 x3 
Q 

sin(t) 
 

dt2
 

0 
dt 

0 
m m  

(10) 

q Unstable 

Stable Stable 


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(k m) 

1 where the spring force is kx  k x
3 
, m is the system, response peaks at the resonant level 

  1 ). 

mass,  is the damping ratio of the system, 0 

(given by ) is the undamped linear 

natural   frequency   and Q and  are the 

amplitude and frequency, respectively, of the 

external harmonic excitation. Setting k1   k 

and introducing the following dimensionless 

quantities:   0t ,   x (Q k ) ,    0 ; 

equation (10) becomes: 
 

d 
2 

d 2 

 2 
d


d
    3  sin( t) 

 

 
 

(11) 

 

 

 
 

Figure 9. response for 

 

 

  0.9 . 
Equation (11) is a harmonically forced Duffing 

equation [10]. A numerical solution to the 

problem is given in the following. 
 

Taking,   0.25 (weak   non-linearity)   and 

  0.10 (light damping) the response can be 

obtained with the aid of MAPLE® (initial 

conditions are set to   0 

appendix for worksheet). 

and d d  0 , see 

 

The goal is to illustrate the “jump 

phenomena”, where the steady state response 

amplitude undergoes a jump when the frequency 

of the excitation approaches the linear resonant 

frequency (  1 ). The response is obtained for 

several values of the excitation frequency and 

the steady state values are plotted versus the 

frequency ratio  . Figure 9 through Figure 12 

illustrate the responses and the steady state 

values for excitation frequencies close to the 

linear resonance frequency. Note the increase of 

the steady state values and the sudden drop 

(“jump”) at   1.5 . 

 
 

Figure 10. response for   1 . 

 

Figure 13 depicts the frequency response for 
the system obtained numerically. A “jump” is 

clearly observed in the vicinity of   1.5 . 

 
Also included in the figure is the frequency 

response for the system when   0 (linear 

 

 

 

 
Figure 11. response for 

 

 

  1.4 . 
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Figure 12. response for   1.5 . 

Students should notice the “bending” of the 

resonant peak in the case of a non-linear system. 

Here the peak is bent to the right since the non- 

linearity is of a hardening type (in the case of a 

softening non-linearity the peak would bend to 

the left). No steady state values were obtained 

for the unstable solutions highlighted in the 

figure. These are unstable stationary solutions 

and will not be observed in practice. 
 

 

 

Figure 13. Numerically obtained 

frequency response. 

 

Conclusions 

 

In many institutions the required introductory 

courses now expose students to mathematics 

software such as MATLAB®, MAPLE®, etc. 

Advantage can be taken of this in beginning 

mechanics courses to explore some hitherto 

intractable problems which shed light on 

interesting and important dynamical 

phenomena. The examples presented were: (i) A 

comparison between some non-linear systems 

and their linearized counterparts; (ii) A simple 

pendulum with an oscillating support, 

illustrating parametric resonance. Depending on 

the parameter values of the system instabilities 

can occur (parametric resonance). This is shown 

numerically and confirmed with an available 

analytic expression. (iii) Forced harmonic 

motion of a non-linear hardening spring-mass 

system. The numerical simulation of the 

response illustrates a “jump phenomena” in 

which the steady state amplitude undergoes a 

jump in passing through frequencies close to the 

linear resonance frequency. 
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Appendix 

 

MAPLE ® Worksheets 

 
# Maple: Euler's method, runge-kutta 

and linear approximation 

restart:with(linalg):with(plots):with(D 

Etools): 

eq01:=diff(theta(t),t$2)+sin(theta(t)); 

eq02:=diff(theta(t),t$2)+(theta(t)); 

initial_angle:=evalf(convert(45*degrees 

,radians)); 

initial_velocity:=0; 

ic1:=theta(0)=initial_angle,D(theta)(0) 

=initial_velocity; 

ic2:=theta(0)=initial_angle/10,D(theta) 

(0)=initial_velocity; 

soln02_1:=evalf(dsolve({eq02,ic1})); 

soln02_2:=evalf(dsolve({eq02,ic2})); 

soln01_1:=dsolve({eq01,ic1},numeric,out 

put=procedurelist); 

soln01_2:=dsolve({eq01,ic2},numeric,out 

put=procedurelist); 

fig01:=odeplot(soln01_1,t=0..50,numpoin 

ts=500,labels=["time","angle"],labeldir 

ections=[horizontal,vertical],color=bla 

ck,style=line,symbol=circle): 

fig02:=odeplot(soln01_2,t=0..50,numpoin 

ts=500,labels=["time","angle"],labeldir 

ections=[horizontal,vertical],color=blu 

e,style=point,symbol=box): 

fig03:=DEplot(eq02,theta(t),t = 

0..50,[{ic1}],numpoints=500,labels=["ti 

me","angle"]): 

fig04:=DEplot(eq02,theta(t),t = 

0..50,[{ic2}],numpoints=500,labels=["ti 

me","angle"]): 

# 

display(fig01,fig03); 

display(fig02,fig04); 

display(fig01,fig02); 

# Simple Euler's Method - non-linear 

h:=.01; 

y2(0):=initial_velocity;y1(0):=initial_ 

angle/10; 

number:=2500; 

for i from 0 to number do: 

y1(i+1):=y1(i)+h*y2(i);y2(i+1):=y2(i)+h 

*(-sin(y1(i))); 

c1[i+1]:=[i*h,y1(i+1)];c2[i+1]:=[i*h,y2 

(i+1)]; 

end do: 

mat01 := array(1..number):mat02 := 

array(1..number): 

for j from 1 to number do 

mat01[j] := c1[j]: mat02[j]:= c2[j]: 

end do: 

#print(mat01);#print(mat02); 

fig05:=pointplot(mat01,color=black,labe 

ls=["Non-dimensional time","Amplitude - 

rad"],labeldirections=[horizontal,verti 

cal],symbol='box',symbolsize=5):display 

(%); 

#fig06:=pointplot(mat02,color=black,lab 

els=["Non-dimensional time","Amplitude 

rad"],labeldirections=[horizontal,verti 

cal],symbol='box',symbolsize=5):display 

(%); 

display(fig04,fig05); 

# Simple Euler's Method - linear 

h:=.01; 

y2(0):=initial_velocity;y1(0):=initial_ 

angle/10; 

number:=2500; 

for i from 0 to number do: 

y1(i+1):=y1(i)+h*y2(i);y2(i+1):=y2(i)+h 

*(-(y1(i))); 

c1[i+1]:=[i*h,y1(i+1)];c2[i+1]:=[i*h,y2 

(i+1)]; 

end do: 

mat03 := array(1..number):mat04 := 

array(1..number): 

for j from 1 to number do 

mat03[j] := c1[j]: mat04[j]:= c2[j]: 

end do: 

#print(mat03);#print(mat04); 

fig07:=pointplot(mat03,color=black,labe 

ls=["Non-dimensional time","Amplitude - 

rad"],labeldirections=[horizontal,verti 

cal],symbol='box',symbolsize=5):display 

(%); 

display(fig04,fig07); 

 
# Pendulum on an oscillating support 

restart:with(linalg): 

eq01:=diff(g(x),x$2)+c*diff(g(x),x)+(nu 

0^2-nu^2*q*cos(nu*x))*g(x); 

g(x):=a1*sin(nu*x/2)+b1*cos(nu*x/2); 

eq01; 

eq1:=combine(eq01,trig); 

eq1:=sort(eq1,[sin(nu*x/2),cos(nu*x/2)] 

); 

eq1a:=collect(eq1,[sin(nu*x/2),cos(nu*x 

/2)]); 

coef01:=coeff(eq1a,sin(nu*x/2),1); 
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coef02:=coeff(eq1a,cos(nu*x/2),1); 

m1:=collect(coef01,[a1,b1]); 

m2:=collect(coef02,[a1,b1]); 

matriz:=matrix(2,2,[coeff(m1,a1,1),coef 

f(m1,b1,1),coeff(m2,a1,1),coeff(m2,b1,1 

)]); 

equacao:=det(matriz); 

raizes:=solve(equacao,q); 

c:=.01;nu0:=1; 

raizes; 

raizes[1]; 

raizes[2]; 

#raizes[3]; 

#raizes[4]; 

plot([raizes[1],raizes[2]],nu=0..5,0..1 

0); 

plot([raizes[1],raizes[2]],nu=1.5..2.5, 

0. 0.4,labels=["nu","q"],color=black); 

restart:with(linalg):with(DEtools):with 

(plots): 

eq01:=diff(g(x),x$2)+c*diff(g(x),x)+(nu 

0^2-nu^2*q*cos(nu*x))*g(x); 

c:=0.01;q:=0.2;nu0:=1;nu:=2; 

eq01; 

sol001:=dsolve({eq01,g(0)=0.1,D(g)(0)=0 

},{g(x)}, type=numeric, 

method=gear,output=procedurelist); 

odeplot(sol001,[x,g(x)],0..50,numpoints 

=1000,color=black,labels=["time","ampli 

tude"],labeldirections=[horizontal,vert 

ical]); 

c:=0.01;q:=0.2;nu0:=1;nu:=1.6; 

eq01; 

sol001:=dsolve({eq01,g(0)=0.1,D(g)(0)=0 

},{g(x)}, type=numeric, 

method=gear,output=procedurelist); 

odeplot(sol001,[x,g(x)],0..200,numpoint 

s=1000,color=black,labels=["time","ampl 

itude"],labeldirections=[horizontal,ver 

tical]); 

 

# Duffing equation 

restart: 

with(linalg):with(plots):with(DEtools): 

with(plottools): 

eq01:=(diff(x(t), `$`(t, 

2)))+2*beta*(diff(x(t), 

t))+x(t)+delta*x(t)^3-sin(nu*t); 

delta:=0.25;beta:=0.1; 

eq01; 

nu:=0;n:=400;number:=100; 

for i from 1 to number do 

eq01: 

sol001:=dsolve({eq01,x(0)=0,D(x)(0)=0}, 

{x(t)}, type=numeric, 

method=gear,output=listprocedure):xt:=e 

val(x(t),sol001): 

xxt:=[seq(abs(xt(j)),j=300..n)]:f1:=max 

((xxt)):p[i]:=[nu,f1]: 

odeplot(sol001,[t,x(t)],0..n,numpoints= 

2500,color=black,labels=["non- 

dimensional 

time","amplitude"],axes=boxed); 

nu:=nu+0.02: 

end do; 

mat01 := array(1..number): 

for j from 1 to number do mat01[j] := 

p[j] end do: 

print(mat01); 

fig01:=pointplot(mat01,color=black,labe 

ls=["Non-dimensional 

Frequency","Amplitude"],labeldirections 

=[horizontal,vertical],symbol='box',sym 

bolsize=15):display(fig01); 

eq02:=(diff(x(tau), `$`(tau, 

2)))+2*beta*(diff(x(tau), 

tau))+x(tau)+delta*x(tau)^3- 

sin(omega/omega0*tau); 

amp:=1/(sqrt((1- 

(omega/omega0)^2)^2+(2*beta*omega/omega 

0)^2)); 

omega0:=1;delta:=0;beta:=0.10; 

eq02; 

amp; 

fig02:=plot(amp,omega=0..2): 

plots[display]([fig01,fig02],labels=["N 

on-dimensional frequency","Non- 

dimensional steady state 

amplitude"],labeldirections=[horizontal 

,vertical]); 
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