
COMPUTERS IN EDUCATION JOURNAL 55

USING ECLIPSE-BASED SOFTWARE TOOLS TO TEACH MODEL-
BASED DESIGN METHODOLOGY IN A PROGRAMMING TOOLS

COURSE AND AN EMBEDDED COMPUTER SYSTEMS COURSE

Nannan He, Han-Way Huang
Electrical and Computer Engineering Technology Department

Minnesota State University at Mankato, Mankato, USA

Abstract

This paper presents our experience of
introducing both eclipse-based tools and model-
based design (MBD) methodology into a
system-level Programming Tools course for
senior electrical engineering and computer
engineering students. Eclipse is an integrated
software development environment from IBM.
Eclipse-based development tools have been
widely employed by software projects in both
academy and industry. Many eclipse-based
software tools support MBD, an emerging
development methodology for creating complex
embedded software. We introduce students to
the MBD process in combination with eclipse-
based tools. The goal is to equip engineering
students with the knowledge of advanced
system development method and software tools
so that they are able to utilize the tools for the
efficient and cost-effective development of
embedded systems. Our preliminary
observations show that this combination could
help students understand advanced software
development technologies in practice, and
improve the efficiency of designing and
implementing embedded software projects.

Introduction

Nowadays, in many computing systems, the
software portion is expected to have the greater
impact on the behavior of entire systems.
Knowledge of computing and software
programming is important to engineering and
technology students. The US Bureau of Labor
Statistics predicts that computing will be one of
the fastest-growing U.S. job markets in STEM
through 2020: about 73% of all new STEM jobs
will be computing related [1]. Moreover,
software development training could be a

valuable experience for students, as it can
cultivate students’ problem solving and process
development capability.

However, programming is often considered to
be difficult for engineering and technology
students. They usually study the syntax and
semantics of low-level programming languages
such as C or assembly in one or two semesters.
Compared with computer science major or
software engineering major students, they have
fewer opportunities to apply programming
skills. It is common among engineering students
that the language syntax is easily forgotten.
When a class project involves software
programming, students often spend a large
amount of time in debugging syntax and
semantics errors, with little time left for the
algorithm development and verification. Many
engineering students consider writing a small
program with 300~500 lines of C code as a
painful experience. A large percentage of junior
or senior design projects that cannot be
accomplished on time are due to the prolonged
software implementation and testing stage.

Model-based design (MBD) is an emerging
methodology for developing complex software
systems, especially embedded software. Its
efficiency has been demonstrated in software
engineering. For example, Matlab/Simulink
from MathWorks is a graphical programming
tool for multi-domain simulation and MBD has
become the predominant software modeling
language in many motion controls, aerospace
and automotive applications. By promoting the
use of domain-specific notations to graphically
represent specifications and designs, MBD can
identify design flaws at the early stage and
avoid costly design fixes during the late stage.
The implementation of software systems can be

56 COMPUTERS IN EDUCATION JOURNAL

generated automatically or manually from high-
level models. In recent years, multiple EU-
funded projects on embedded systems have been
launched or completed to promote the wide
application of MBD in industry, and to solve
challenges encountered in different real-world
application domains, such as the MOGENTS
project [2] (Model-based Generation of Tests
for Dependable Embedded Systems), and the
SESAME project (A Model-driven Test
Selection Process for Safety-critical Embedded
Systems) [3]. However, few universities in
America currently offer engineering and
technology students the knowledge of MBD.

In the last decade, eclipse-based tools have
been widely applied to developing dependable
embedded software systems in various
applications such as automobile and automation
industries. Eclipse is an integrated development
environment (IDE) originated by IBM, which
comprises a base workspace and an extensible
plug-in system for customizing the environment.
Eclipse has been widely used for teaching
software programming in computer science
courses as it has several important benefits for
computer programming. Firstly, by means of
various plugins, Eclipse provides multi-
language programming, such as Java, C/C++.
Secondly, Eclipse is cross-platform, which
supports Windows, Linux and Mac OS as well.
Thus, it is preferable for developing Linux-
based embedded systems. Thirdly, Eclipse is
free and open source under the terms of the
Eclipse Public License. Most Eclipse-based
software tools are also free for education
purposes. In recent years, eclipse-based tools
have been employed in increasing numbers of
software projects in both academics and
industry. They have become available for
dealing with a wide range of embedded systems
development problems, such as microcontroller
(MCU) programming, system modeling, real-
time computing platforms, and FPGA based
embedded systems development. Moreover, the
Eclipse modeling framework which is an
eclipse-based modeling platform and code
generation facility, is one of the most popular
and well-known MBD initiatives.

Acronyms

CCS: Code Composer Studio
CDT: C/C++ Development Tool
EMF: Eclipse Modeling Framework
FPGA: Field Programmable Gate Array
IDE: Integrated Development Environment
MBD: Model Based Design
MCU: Microcontroller
PLC: Programmable Logic Controller
PT: Programming Tools
SoC: System on a Chip
TI: Texas Instruments
V&V: Validation and Verification

Programming Tools Course Description

The Programming Tools (PT) course is

usually required for computer engineering or
computer science majors, and other engineering
and technology majors in many universities in
America. It can be offered at either the
introductory level or the system level. At the
introductory level, the PT course emphasizes the
basic methodology and tools supporting
program compiling, linking, testing and
debugging [4]. At the systems level, it typically
focuses on the concepts of system-level
programming (e.g., C/C++, Python and
LabVIEW input language); tool chains for the
group software development; and topics on
software system design, implementation, testing
strategies and documentation [5].

The PT course presented in this paper is closer
to the systems level. It is organized as 2 hours of
lecture and 2 hours of laboratory per week. At
the end of the course, students are expected to
be capable of utilizing programming tools to
develop a complete hardware/software
embedded system as their course project. In
many cases, after initiating the project, students
quickly move to the implementation stage after
a brief design phase, and start the C
programming and debugging iterations using an
IDE. Although this approach works for the
small-scale course project, students have
reported that it is very time consuming and
inefficient. And the behavior of the constructed

COMPUTERS IN EDUCATION JOURNAL 57

system often deviates from the original design
plan. Educators have recognized the need of
introducing efficient and cost-effective
programming tools to students. The main goal is
to equip students with the knowledge of
developing complex engineering systems under
a large number of constraints.

Experts in the software engineering and
computer science communities advocate
introducing the MBD methodology to students.
Students are provided with insights, techniques
and tools to alleviate the difficulties of
developing complex software systems.
Educators have either integrated MBD into an
existing software design course [6], or proposed
a new project-based course to solely teach MBD
[7]. However, as these courses are mainly for
computer science students, their contents are too
theoretical for engineering and technology
students who have a limited software
development background.

Course Learning Objectives

The intent of our PT course is to convey the
practical knowledge about programming to
students. We added new materials on MBD
from the engineering practitioner’s point of
view to this course with three top objectives
which are further divided into sub-objectives.

1. To improve students’ awareness of the

latest MBD methodology.
1.1 To identify basic stages of the MBD

process.
1.2 To understand the unique features of

MBD (executable design specification,
automated code generation, and
continuous verification and
validation).

2. To develop students’ appreciation for
MBD that contributes to the efficient and
cost-effective system development.
2.1 To comprehend the advantages of

MBD compared with existing software
development methods such as the V-
model.

3. To introduce students to modern eclipse-
based software development tools that
support MBD.
3.1 To utilize software tools for efficiently

developing embedded systems.

Model-based Design Concepts

We introduce fundamental MBD concepts
(that are important for an engineering
practitioner) to our students during the first
week. Five basic steps of MBD are covered,
from the requirement analysis, system design,
implementation, integration to continuous
validation and verification (V&V). Based on the
MBD process illustrated in Figure 1, we discuss
the main differences between MBD and
conventional software development processes
like the waterfall model or V-model to
encourage active learning. For instance, students
can summarize by themselves that verification is
conducted continuously during each of the other
four steps, instead of at their completion.
Students are also guided to learn new concepts
along each basic MBD step. Using the system
design step as an example, students study the
concept of Executable Specification (in terms of
models shown in Figure 1). It can
unambiguously model the entire system
functionality, including an environment,
physical component and design algorithm.
These models have multiple benefits, such as
improving communication and collaboration in
a development team via sharing models,
increasing productivity by maximizing
compatibility between systems through the
reuse of standardized models, and supporting
the early validation via models simulation.

After introducing the basic concepts of MBD,
we teach the automated code generation and
model-based V&V in details. Both are major
factors that contribute to the efficiency
improvement of the design, implementation and
verification of safety-critical and security-
critical embedded software systems.

58 COMPUTERS IN EDUCATION JOURNAL

Figure 1: Model-based design process

Automated Ccode Generation

An increasing number of automated code
generation tools have been created in the past
decade. They help engineers to faster and better
develop documented software in comparison to
hand coded development. It has two outstanding
advantages: (i) Eliminate errors from hand-
coding; (ii) Regenerate easily for different
targets. Many engineers with limited
programming experience could be greatly
relieved from low-level programming and focus,
instead, on domain-specific issues. Moreover,
depending on various application purposes,
system design models can be translated to
different implementation languages. For
example, the program coded in Structured Text
(a PLC language) is generated for PLC
automation applications from Matlab/Simulink
models; VHDL or Verilog code is generated for
hardware specification models in FPGA or
ASIC applications; for the microcontroller

control or DSP applications, models are
translated to C/C++, which are dominant
implementation languages. In addition, most
high-level graphical programming languages
like Matlab/Simulink and LabVIEW are easy to
learn and use, but lack rigorous semantics.
Some researchers have investigated the
automated transformation from Simulink to a
formal modeling language like Lustre, and
applied existing formal verification tools to
checking Lustre programs so as to formally
verify Simulink models [8].

To give students a direct experience in
automated code generation, the C code
generated by a commercial tool Simulink
Coder™ (formerly Real-Time Workshop®) and
an open-source tool Gene-auto [9] have been
exposed to students. First, the comparison of the
code generated using these two tools is
discussed in class. The C code generated from
Simulink Coder is complex and hard to read.

COMPUTERS IN EDUCATION JOURNAL 59

This is mainly due to the additional code
instrumented for performance optimization,
code portability to various hardware targets, or
debugging purposes. The resultant code can be
used for both real-time and non-real-time
applications, including simulation acceleration,
rapid prototyping, etc. In contrast, the C code
derived by Gene-auto is clean and easy to trace
back to the corresponding Simulink model
blocks. Such translated C code is mainly used
for the program verification. Thus, the purpose
is on functional correctness rather than
execution performance. Next, the C code
generated by the Gene-auto tool from Simulink
design models is further studied for students to
understand the details of the automated code
generation mechanism.

Two translation examples are selected for the
case study: (i) the translation of basic logical
operation blocks, arithmetic operation blocks
and simple subsystems composed of these two
kinds of blocks to C functions or statements; (ii)
the translation of states and transitions in
Stateflow charts to C functions. For example, an
addition “+” block with three inputs and one
output can be translated to the C statement “o1
= in1 + in2 + in3”. Students are asked to prepare
a class report about the comparison of different
code generation tools. Some relevant research
papers were also offered to students who want
to explore this topic further [10]. This topic not
only helps students understand the automated
code generation mechanism, but also convinces
a student of the great enhancement achieved by
the MBD approach to the system development
by engineers.

Model-based Validation and Verification

Model-based V&V represents a set of
verification and validation techniques
continuously applied through the entire MBD
process. It contributes to three important
goals/benefits: (i) Detect design errors early in
the development; (ii) Reuse the tests throughout
the development process; (iii) Reduce the use of
physical prototypes. In this course, three aspects

of model-based V&V techniques/tools are
provided to students.

Firstly, conventional quality control
techniques in software engineering [11] are
recapped and compared. Validation is targeted
at answering the question “Are we developing
the right system?”, while verification aims at
answering a different question “Are we
developing the system right?” Formal method
and testing are two of the most popular
approaches to hardware / software verification.
In mission-critical systems, where bugs may
occur with disastrous effects, formal methods
are employed to guarantee the correct system
behaviors with respect to the safety-critical
requirements. In comparison, testing is scalable
and easy to apply although it is limited to
detecting bugs in a system; but it cannot ensure
the correctness. Unit testing, integration testing
and system testing are three common testing
practices in the software systems development.
The purpose of recapping quality control
techniques is for students to clarify the typical
usage differences of these techniques.

Secondly, V&V techniques applied at
different MBD steps are discussed in class.
During the initial requirement analysis step, a
validator is applied to ensure that the extracted
requirements correctly match the intended
applications. In the system design step, a model
simulator can be utilized to check whether the
executable design specification satisfies the
requirements obtained in the initial step. Unit
testing is typically applied to check if the
implementation coded in some low-level
languages is functionally consistent with design
models. Integration testing and system testing
are initiated from the integration step. Formal
methods are applied to check the critical
components in the implementation. A
translation validation tool, which formally
verifies the translation from Simulink models to
C, is also introduced to students.

Thirdly, latest advances of the model-based
testing in both academics and industry are
exposed to students. This is one of our new

60 COMPUTERS IN EDUCATION JOURNAL

teaching endeavors of integrating an on-going
research project into advanced undergraduate
level or graduate level courses; this has been
reported in [12].

Eclipse-based Software Programming
 and Modeling Tools

Eclipse is a popular computer programming

IDE originated from IBM VisualAge. More than
eighty well-known IT companies (like QNX,
Red Hat) besides IBM, have joined a foundation
for the development and promotion of Eclipse.
Many universities in the US currently adopt
Eclipse for software programming and teaching
computer science courses. Eclipse owns several
unique characteristics for efficient and cost-

effective computing system development.
Firstly, by means of various plugins, developers
can customize the Eclipse environment to
develop applications using not only Java but
also other high-level programming languages.
For example, the C/C++ development tool
(CDT) is an integrated development
environment based on Eclipse to support
developing applications in C/C++. Users can
develop their own plug-ins to customize
capabilities of the Eclipse platform. For
example, some software model checkers include
a graphical user interface, which is implemented
as an Eclipse plugin for user-friendly
verification and debugging. Secondly, as
Eclipse itself is mostly implemented in Java
(whose important feature is portability), it is

Table 1: Eclipse-based software tools for embedded design.

Name Vendor Major Apps Features Description

CooCoxCoIDE Open
platform

MCU Programming
Embedded real-

time systems
development

It consists of a component-based network platform and an
eclipse-based IDE. It is configured with ARM GCC
compiler and debugger for the ARM Cortex MCU based
microcontroller programming.

Momentics
Tool Suite

QNX C/C++
programming,

Embedded real-
time systems
development

A comprehensive IDE with profiling tools for analyzing
system behavior such as real-time interactions, memory
accesses.

eTrice Eclipse MBD for embedded
systems, especially

auto-code
generation

An Eclipse project for embedded model driven software
development using a special system model called ROOM. It
supports the code generation in Java, or C/C++.

TOPCASED Airbus MBD for embedded
systems, especially

auto-code
generation, formal

verification

An Eclipse based software environment dedicated to the
realization of critical embedded systems. It supports formal
checking and code generation from models in sysML or
UML to Java, C or Python.

Code
Composer

Studio

Texas
Instruments

MCUProgramming An IDE for developing applications for TI embedded
microprocessors, including DSPs, ARM based MCUs. It
includes a real-time operating system, so as to support OS
level application debug and low-level JTAG based software
development.

Xilinx
Platform
Studio

Xilinx MBD for FPGA
based embedded

system
development

The embedded development kit for building MicroBlaze
embedded processor systems in Xilinx FPGAs. One tool
Xilinx Platform Studio in this kit allows designers to
configure the hardware specification of the system and
automatically converts the specification into a RTL
description using VHDL or Verilog.

COMPUTERS IN EDUCATION JOURNAL 61

cross-platform and runs on any
hardware/operating-system platform, like Linux
and Mac OS besides Windows. This feature is
particularly useful for developing Linux-based
embedded systems. Thirdly, Eclipse is free and
open source software, and other Eclipse-based
development tools that are released under the
Eclipse Public License are also free.

Besides the flexible, portable and cost-
effective programming environments that
Eclipse provides, Eclipse is also one of the
model-based design initiatives. Eclipse
modeling framework (EMF) provides the
modeling and code generation facility for
building tools and other applications based on a
formatted data model [13]. From a model
specification described in XML Metadata
Interchange (XMI), EMF supports constructing
software tools to automatically create the code
implementation for the design model, a set of
utility classes enabling editing the models and a
basic editor. There are a large number of EMF-
based software tools available for multiple
MBD usages, such as composite modeling,
model transformation, model simulation and
checking, and code synthesis.

As this PT course is for engineering and
technology students, the emphasis of this course
is on introducing the EMF-based tools for the
MBD of embedded systems, instead of the
working mechanism of EMF itself. In this
course, we first briefly discuss the Eclipse
platform including its origin and architecture,
especially its innovative plug-in extensions and
support for multiple programming languages.
Some popular Eclipse plugins are exposed to
students, such as Eclipse Subversive called
Subversion for version control.

Recently, Eclipse-based development tools

have become available for dealing with a wide
range of embedded systems development
problems. Table 1 shows a list of Eclipse-based
software tools for embedded systems related
applications. We have selected three tools to
introduce to students in this course: Code
Composer Studio (CCS) from Texas

Instruments (TI) – an IDE for MCU
programming; TOPCASED – a development
environment dedicated to the modeling, code
synthesis and verification of safety critical
embedded systems; and Xilinx Platform Studio
– a software tool for developing FPGA based
system-on-chip electronic hardware. The
primary experience of teaching these tools is
presented in the following.

TI/CCS: To teach students using CCS for MCU
programming, we choose the TI TM4C1294
Connected Launch Pad as the hardware board
for developing a MCU-based embedded system
in this course. The MCU included in this board
is the 32-bit ARM Cortex-M4. A step-by-step
tutorial on using CCS for the MCU
programming has been prepared, starting from
launching CCS, importing or creating a C/C++
project, configuring the project compilation and
linking properties, building and debugging a
project to loading the built project to the flash
memory of the target board. After getting
familiar with CCS, students have developed a
capstone project for the Internet of Things
application under this environment: a web-based
remote temperature monitoring and control
system for home automation.

TOPCASED: The main motivation of
introducing this tool is to help students be aware
of formal verification of design models in this
environment. We introduce students to multiple
simple demo examples instead of teaching the
formal semantics of the back-end TOPCASED
modeling language, which is too overwhelming
for non-CS students. The transformation from
the front-end modeling language AADL to the
back-end formal language and the underlying
model checker used for the automated formal
verification are also provided to students.

Xilinx platform studio: As the capacity of
FPGA devices grows rapidly, a System on a
chip (SoC) can be realized in a programming
chip. A lab manual has been prepared to teach
students utilizing this software tool to design the
SoC based FPGA. By following the manual, all
students have successfully used this software

62 COMPUTERS IN EDUCATION JOURNAL

tool to develop the hardware design projects,
especially customizing the SoC by configuring
the Xilinx MicroBlaze software core and
selecting memory modules and IO modules.
This tool also enables the automatic generation
of the hardware design in Verilog HDL.

These tools can help students design and

implement their senior course projects more
efficiently. More importantly, all Eclipse-based
tools share common features from project
management, code/model edit view, project
building and execution, and debugging
perspectives. After students grasp Eclipse and
one or two Eclipse-based tools, it is easy for
them to learn and use other new Eclipse-based
tools, which reside in the embedded systems
development.

Conclusion

MBD is an advanced and cost-effective
development methodology for developing
complex and safety-critical embedded software
systems. This paper presents our teaching
experience of integrating this new MBD
paradigm into a system-level Programming
Tools course for electrical and computer
engineering and technology students. It mainly
describes two new topics integrated in this PT
course: MBD and eclipse-based software tools,
from course materials preparation and
instruction approaches to the two aspects.
Eclipse and other Eclipse-based tools are
observed to be useful in more than just software
programming instruction in computer science
courses. Our experiences show that such tools
in combination with MBD are also helpful in
embedded computer systems education for
engineering and technology students. In the
future, our students and our teachers will
together create more capstone projects utilizing
the MBD paradigm in combination with
Eclipse-based software tools. As we collect
more data, we hope to objectively verify the
educational value of incorporating into our
appropriate courses Eclipse-based tools in
combination with model-based design
methodology.

References

1. Link to US bureau of Labor Statistics:
http://www.bls.gov/emp/ep_table_102.ht
m,

2. EU MOGENTES project, http://www.

mogentes.eu/, 2014.

3. SESAME project http://wiki.lassy.uni.

lu/projects/SESAME

4. J. L. F Aleman, "Automated Assessment

in a Programming Tools Course,"
Education, IEEE Transactions on,
vol.54, no.4, pp.576-581, Nov. 2011.

5. Paul G. Flikkema. “Approaching the

Design of Complex Engineered Systems:
A Model-based Approach Informed by
System Thinking”. Proceedings of ASEE
PSW Conference, 2012.

6. P. J. Clarke, Y. Wu, A. Allen, and T.M.

King, “Experiences of Teaching Model-
driven Engineering in a Software Design
Course”, ACM/IEEE Intl. conference on
Model Driven Engineering Language
and Systems, Oct. 2009.

7. Mireille Blay-Fornarino. "Project-based

teaching for Model-Driven
Engineering", in Proceedings of
Promoting Software Modeling through
Active Education, pages 69-75, Sept
2008.

8. A. H. Joshi, “Model-based safety

analysis of Simulink models using
SCADE design verifier”. Proceedings of
Computer Safety, Reliability, and
Security, vol. 3688, Springer, 2005.

9. Gene-auto project. http://geneauto.

gforge. enseeiht.fr/

10. C. Silva, S. Correa, A.M. Cunha, V.
Dias, and O. Saotome, "A comparison
between automated generated code tools

http://www.bls.gov/emp/ep_table_102.htm
http://www.bls.gov/emp/ep_table_102.htm

COMPUTERS IN EDUCATION JOURNAL 63

using model based development,"
Proceedings of Digital Avionics Systems
Conference, pp.1-9, Oct. 2011.

11. S. Bran, “The Pragmatics of Model-

driven Development”, Software, IEEE,
vol.20, no.5, pp.19-25, 2003.

12. Nannan He. “Incorporating On-going

Verification & Validation Research to a
Reliable Real-Time Embedded Systems
Course”. Proceeding of the ASEE North
Midwest Sectional Conference, pp.402-
408, Fargo, Oct. 2013.

13. Eclipse modeling project. http://www.

eclipse.org/modeling/

Biographical Information

Nannan He is an Assistant Professor of the
ECET Department in Minnesota State
University at Mankato, Minnesota, USA. She
received the Ph.D. in computer engineering
from Virginia Tech. Her teaching and research
interests are in safety-critical embedded
software, real-time systems, and software
verification.

Han-Way Huang is a Professor of the ECET
Department of Minnesota State University at
Mankato, Minnesota, USA. He received the
Ph.D. in computer engineering from Iowa State
University

