
COMPUTERS IN EDUCATION JOURNAL, VOLUME 8, ISSUE 3, SEPTEMBER 2017 1

Abstract— This paper presents a simulator that is written

in C# and designed as a means of enhancing students’
learning of disk scheduling algorithms both in and out of the
classroom. The simulator animates the concepts of several
disk scheduling algorithms commonly discussed in operating
systems textbooks. The simulator has three unique features.
First, it uses a more practical model of disk requests that
allows new requests to come in while other requests are
being processed. Second, it has a practice function that
allows the user to reinforce the concepts learnt by solving
scheduling problems and check the answers against the
simulator. Third, it has a comparison function that lets the
user easily compare the simulation results and the
performance statistics of different disk scheduling
algorithms, up to 9 algorithms, at the same time.

Index Terms—Algorithm Animation, Computer Science
Education, Disk Scheduling Algorithms, Educational
Software, Operating Systems

I. INTRODUCTION
 have been teaching an operating systems course for
over a decade. Based on my teaching experiences,

students tend to understand operating system concepts
better when explanations are given along with some sort
of visualization. In fact, visualization has a long history in
computer science education [1-7] and research has shown
that carefully designed visualization can beneficially
impact students’ learning. For example, research [8-12]
has shown that active engagement of student attention and
students being able to control the pace of their
visualization are necessary to make visualization tools
educationally effective. Keeping these in mind, I have
developed a simulator that animates the concepts of
several disk scheduling algorithms commonly discussed
in operating systems textbooks.

Besides presenting an animated view of disk
scheduling algorithms to the user, the simulator has three
unique features. First, it uses a more practical model of
disk requests that allows new requests to come in while
other requests are being processed. This model is
comparatively more practical than the model used in

Manuscript received November 9, 2016.
Manuscript revised October 19, 2017.
Sukanya Suranauwarat is with the Computer Science Department,

Graduate School of Applied Statistics, National Institute of
Development Administration (NIDA) Bangkok, Thailand (e-mail:
sukanya@as.nida.ac.th).

textbook examples, which assumes there are no other disk
requests coming while pending requests are being
processed. By using a more practical model of disk
requests, users will get a better understanding of the fact
that the operating system needs to dynamically adjust the
disk scheduling queue as a disk request arrives. The user
can observe the behavior of disk scheduling algorithms by
running them on a set of disk requests, which can be
configured easily using the user-friendly interface of the
simulator. The second unique feature of the simulator lies
in its practice function that allows the user to make his or
her own scheduling decisions and check the answers
against the simulator. The disk scheduling algorithms are
not hard to understand, but they can easily confuse
students because they are so similar. Using the practice
feature of the simulator will not only help students
reinforce the concepts studied but also discern the
differences and the similarities among various algorithms.
The third unique feature of the simulator enables the user
to conveniently compare the simulation results and the
performance statistics of different disk scheduling
algorithms, up to 9 algorithms, at the same time. The
simulation results, as well as the performance statistics of
each algorithm, can be saved as an image, which can be
viewed or printed by any standard image viewer for
further study. The simulator can be used as a means of
enhancing students’ learning of disk scheduling
algorithms both in and out of the classroom.

The remainder of this paper is organized as follows. In
section 2, I discuss related work. In section 3, I give a
brief overview of the disk scheduling algorithms
supported by the simulator. In section 4, I describe the
operation of the simulator in detail. In section 5, I
describe the uses of the simulator both in and out of the
classroom and summarize this work in section 6.

II. RELATED WORK
In this section, some animation tools for learning disk

scheduling algorithms that others have developed are
discussed.

English and Rainwater [13] conducted research on the
effectiveness of using animations as primary instruction
tools for teaching an operating systems course. As part of
this research project, several animations are developed
using Adobe Flash including the animations for teaching
FCFS, SSTF, and SCAN disk scheduling algorithms [14].
All of these animations are built upon the examples in

A Disk Scheduling Algorithm Simulator
Sukanya Suranauwarat

I

2 COMPUTERS IN EDUCATION JOURNAL, VOLUME 8, ISSUE 3, SEPTEMBER 2017

their adopted textbook, and the user is not allowed to
create his or her own set of disk requests or specify his or
her own configuration parameters. As a result, the user
can only observe the behavior of disk scheduling
algorithms in the same scenario as in the adopted
textbook. These animations demonstrate how an
algorithm works in a similar manner as the simulator
does. The total disk head movement or the total seek
length is also calculated.

Track Animation [15] is a Windows application that
simulates the following disk scheduling algorithms:
FCFS, SSTF, SCAN, C-SCAN, LOOK, and C-LOOK. It
is available under Creative Commons Attribution License.
It is similar to those developed by English and Rainwater
in terms of functionality. But it is more flexible in the
sense that it allows the user to create his or her own set of
disk requests or use a randomly generated set of disk
requests.

Meyer and Verdicchio [16] developed several programs
in the form of executable Java JAR files to animate
various concepts presented in an introductory computer
science course including disk scheduling. Their disk
scheduling program supports three scheduling algorithms:
FCFS, SSTF, and LOOK. The user can type in a set of
disk requests in a text box of the program or use the
predefined one. The program presents a disk with 100
cylinders as a tall yellow bar where cylinder 0 is at the top
of the yellow bar and cylinder 99 is at the bottom of the
yellow bar, and presents the disk head as a thin red bar
that moves up and down inside the yellow bar. Exactly
where the red bar moves to next is the subject of the
scheduling algorithm. Using this representation, it
becomes very hard to track the order in which cylinders
are serviced. When the simulation is over, nothing is
reported to the user to give any valuable insight about the
algorithms.

None of the tools above have a functionality to
compare the performance statistics of different disk
scheduling algorithms or a capability to use a more
practical model of disk requests that allows new requests
to come in while other requests are being processed. To
my knowledge, the only animation tool that allows new
disk requests to come in while other requests are being
processed is the one developed by Robbins [17]. This tool
shows the animation of the disk head movement for
various algorithms including FCFS, SSTF, SCAN, C-
SCAN, LOOK, C-LOOK, and FSCAN. The tool
represents a scan of the disk in one direction as a
horizontal line, with tick marks at the positions of
accessed cylinders. The user can get a general idea of how
the disk head moves for each algorithm but cannot tell
exactly the order in which the cylinders are serviced
because the tool does not display any cylinder number at
all. The reason behind this could be that it is impossible to
display all the accessed cylinder numbers in a readable
manner when a large set of requests is used. Although this

tool can be used to show the animation of the disk head
movement for each algorithm, its main usage is for
performance comparison and analysis. Therefore, it is not
unusual to run this tool using a large set of disk requests.
In this sense, this tool is not a good candidate for teaching
disk scheduling concepts through animation. To use a
more realistic set of disk requests with this tool, a first
arrival time, a distribution of interarrival times, and
distribution of cylinder references needs to be specified
and saved into a file. While the model of disk requests
adopted by the simulator is not as realistic as Robbins’
tool, it is a simpler model that is easier to understand and
configure, and still satisfies the goal of teaching disk
scheduling algorithms through animation.

Lastly, none of the tools above provide similar
functionality as the practice mode of the simulator that
allows the user to do practice tests, and as the comparison
mode of the simulator that allows the user to simulate up
to 9 algorithms at the same time.

III. OVERVIEW OF DISK SCHEDULING ALGORITHMS
When several processes are trying to access data from

the disk concurrently, the operating system will use a disk
scheduling algorithm to determine which disk request
should be serviced next. Textbooks usually discuss only
the traditional disk scheduling algorithms that concentrate
on reducing seek times for a set of disk requests. The seek
time is the time it takes the disk head to move from the
current position to the cylinder containing the desired
sector. Typical algorithms that are discussed in textbooks
[18-23] and supported by the simulator are listed below.
• FCFS (First-Come-First-Served) algorithm services

the disk requests in the order in which they arrive.
Therefore, a request’s position in the queue is
unaffected by arriving requests. This ensures that a
request cannot be postponed indefinitely, but it also
means that FCFS might perform a long-winded seek
operation to service the next request, even though
another request in the queue is closer and can be
serviced faster.

• SSTF (Shortest-Seek-Time-First) algorithm
chooses the next request with the least seek time from
the current head position. This algorithm can lead to
indefinite postponement because its seek pattern
tends to be highly localized, which can lead to poor
response times for requests to the innermost and
outermost tracks.

• SCAN algorithm moves the disk head from one end
of the disk to the other, servicing requests along the
way. When the disk head reaches the other end of the
disk, it is moved in the reverse direction and newly
arrived requests are processed in a reverse scan. In
this sense, it is called the elevator algorithm because
an elevator continues in one direction servicing
requests before reversing direction.

SURANAUWARAT: A DISK SCHEDULING ALGORITHM SIMULATOR

3

• C-SCAN (Circular SCAN) algorithm is a variant of
SCAN that is designed to provide a more uniform
wait time. Like SCAN, C-SCAN moves the disk head
from one end of the disk to the other, servicing
requests along the way. However, it never performs a
reverse scan. When the disk head reaches the other
end, C-SCAN moves the disk head back to that end
of the disk from where it started (without servicing
requests in between) and initiates another scan.

• LOOK algorithm is a variant of SCAN that “looks”
ahead to see if there are any requests pending in the
direction of the disk head movement. If there are no
such requests, then the disk head will be reversed to
the opposite direction and requests on the other
direction can be served.

• C-LOOK (Circular LOOK) algorithm is a variant
of LOOK algorithm that behaves in the same manner
as C-SCAN, except it moves the disk head only as far
as needed to service the last request in a scan before
starting another scan.

• FSCAN algorithm is a variant of SCAN that freezes
the queue to be serviced when it is doing a scan of
the disk and places requests that arrive during the
scan into a queue to be serviced later. This algorithm
tries to avoid starvation of far-away requests by
delaying the service of late-arriving but nearer by
requests.

• Pickup algorithm is a variant of FCFS. In this
algorithm, the requests are generally taken in order as
with FCFS, but as the system is moving the disk head
it will stop for any tracks that are being passed over
that have a request in the queue.

• LIFO (Last-In-First-Out) algorithm always chooses
to service the last request first.

IV. THE SIMULATOR
The disk scheduling algorithm simulator is written in

C# and designed to be intuitive, engaging; and easy to use
and control. It has three operating modes which are
simulation, practice, and comparison modes. Each mode
is described below.

A. Simulation Mode
While in this mode, the user can watch the animation

showing how a disk scheduling algorithm works. The user
can select an algorithm of his or her interest through a
drop-down menu at the top-left section of the simulator,
as shown in Fig. 1. Figs. 1 and 2 are screenshots of the
simulator in simulation mode. Next to the drop-down
menu is the “Concept” button. When this button is
clicked, a window containing a description along with a
scheduling example of the currently selected algorithm
will pop up. By clicking the “Draw” button, the user can
start watching the animation of the selected algorithm in
the bottom half of the simulator immediately. In this case,

the default set of disk requests and the default
configuration parameters will be used. The top-right
section of the simulator shows the values of the
configuration parameters that are currently set and used.
The configuration parameters include “Initial Head
Position”, “Direction”, “Milliseconds/Cylinder”, “Min
Cylinder”, and “Max Cylinder”. The “Initial Head
Position” parameter is used to specify the position of the
disk head when the scheduling starts. For SCAN
algorithm and its variants, the direction of the disk head
movement also needs to be specified, which can be done
through the “Direction” parameter. The value of “<< L”
of the “Direction” parameter indicates that the disk head
is initially moving toward the lowest-numbered cylinder
(i.e., the outermost cylinder at the edge of the disk),
whereas the value of “R >>” indicates that the disk head
is initially moving toward the highest-numbered cylinder
(i.e., the innermost cylinder nearest the spindle). The
lowest-numbered and the highest-numbered cylinders are
specified through the “Min Cylinder” and the “Max
Cylinder” parameters respectively. The
“Milliseconds/Cylinder” is used to specify the time to
move the disk head over a cylinder; it will be used to
calculate the seek time which will be described later.

Textbook examples typically assume that there is a set
of pending disk requests, and while these requests are
being processed, no other requests come in. To use the
simulator with this model of disk requests, the user can
simply specify a set of cylinder numbers to be accessed
into the “Disk Requests” text box. The user can separate
each cylinder number by a comma or space. For example,
“1, 36, 16, 34, 9, 12” and “1 36 16 34 9 12” are both valid
inputs to the simulator. Alternatively, the user can use a
randomly generated set of disk requests by clicking on the
“Random” button, and then specifying the total number of
disk requests the user wants the simulator to generate. The
randomly generated cylinders will be in the ranges
specified by the “Min Cylinder” and the “Max Cylinder”
parameters. The user can save any specified set of disk
requests and configuration parameters in a file by clicking
the “Save” button. Later on, the user can reuse any saved
set of disk requests and configuration parameters by
clicking the “Open” button followed by the name of the
previously saved file. The user has an option to save
several sets of disk requests and configuration parameters
in the same file or in a different file. To give the user
opportunities to explore the disk scheduling algorithms in
a more practical situation, the simulator allows the user to
specify the disk requests that arrive while other requests
are being processed. To use the simulator with this model
of disk requests, the user needs to specify the cylinders to
be accessed in the form of x/y where x is the disk request
for cylinder numbered x that arrives while the cylinder
numbered y is being processed.

4 COMPUTERS IN EDUCATION JOURNAL, VOLUME 8, ISSUE 3, SEPTEMBER 2017

Fig. 1. A screenshot of simulation mode when the request for cylinder 8 arrives while the request for cylinder 16 is being processed.

Fig. 2. A screenshot of simulation mode when the simulation is over.

SURANAUWARAT: A DISK SCHEDULING ALGORITHM SIMULATOR

5

In the simulation of Fig. 1, the SSTF algorithm was
selected and a user-defined set of disk requests was used.
The user-defined set of disk requests is “1, 36, 16, 34, 9, 12,
8/16, 13/8”. When the simulation starts, there is a queue of
pending disk requests for the following cylinders: 1, 36, 16,
34, 9 and 12, and the disk head is at cylinder 11. The
requests for cylinders 8 and 13 arrive while the requests for
cylinders 16 and 8 are being processed respectively. The
simulator shows the disk requests as they arrive and lets the
user know about their presence by temporarily displaying
them in an outstanding color of pink and making them blink
a couple of times. As shown in Fig. 1, the request for
cylinder 8 arrives while the request for cylinder 16 is being
processed; at that time, the request for cylinder 13 has not
yet entered the queue. When the current request is finished,
the operating system examines the requests and decides
which request to handle next. Using the SSTF algorithm, it
will handle the closest request next. The simulator will show
the animation of the disk head moving seamlessly from the
current request to the next one. If the speed of the animation
is not right, the user can adjust it using the speed-control
slider, which is located under the configuration parameters.
Under the speed-control slider is a set of buttons for
controlling the animation.

In the simulation of Figs. 1 and 2, if no other requests
arrive while the requests in the pending queue are being
processed, the order in which the cylinders are serviced
would be 12, 9, 16, 1, 34, and 36. In fact, while the request
for cylinder 16 is being processed, a new request for
cylinder 8 is present, that request will have priority over
cylinder 1. The request for cylinder 13 then comes in,
causing the disk head to go to cylinder 13 next instead of
cylinder 1. Seeing such an example that allows more
requests to come in while other requests are being processed
will help students, in this case, foresee the problem when
using SSTF with a heavily loaded disk. That is, the disk
head will tend to stay in the middle of the disk most of the
time; hence requests at either extreme will have to wait until
a statistical fluctuation in the load causes there to be no
requests near the middle [18]. Requests far from the middle
may get poor service.

When the simulation is over as shown in Fig. 2, the order
in which the cylinders are serviced is 12, 9, 16, 8, 13, 1, 34,
and 36, as shown in the “Report” text box. With this order,
the disk head movements are 1, 3, 7, 8, 5, 12, 33, and 2, for
a total disk head movement of 71 cylinders. The total disk
head movement or the total seek length, along with the total
seek time and the average seek time are also shown in the
“Report” text box. These are common criteria for evaluating
the performance of the traditional algorithms aimed to
reduce seek times. The simulator also shows how to
calculate these values in the parentheses next to them.

Operating systems textbooks often assume that the time to
seek between two cylinders was proportional to the number
of cylinders moved. This is a simple model that suffices for
the purposes of analyzing traditional algorithms, but it does
not accurately model seeking on real disks. The simulator
will calculate the total seek time of each algorithm using
this model, which results in the product of the total seek
length and the value of “Milliseconds/Cylinder” parameter.
By clicking the “Capture” button, the simulation result in
graphic and the performance statistics can be saved as an
image that can be viewed or printed by any standard image
viewer program for further study.

B. Practice Mode
While in this mode, the user can reinforce the concepts

learnt by solving scheduling problems and check the
answers against the simulator. Figs. 3 and 4 are screenshots
of the simulator in practice mode. Following usability best
practices, the look and feel of practice mode has been
designed to be as similar to simulation mode as possible. As
in simulation mode, the user needs to select an algorithm of
his or her interest, and specify a set of disk requests and
configuration parameters or use the default ones.

In Fig. 3, the LOOK algorithm was selected, the initial
head position is 53, the disk head is moving toward cylinder
199, and the queue of pending disk requests contains 98,
183, 37, 122, 14, 124, 65, and 67. The major difference
between simulation and practice modes is that the bottom
half of simulator in practice mode does not display the
animation of how the selected algorithm works but is the
interface for the user to enter his or her scheduling
decisions. To be more specific, the user can decide which
request will be serviced next by clicking on the cylinder
number the user thinks should be accessed next. The
cylinder number between the lowest-numbered and the
highest-numbered cylinders will appear when the user
moves the mouse pointer over it as shown in Fig. 3. After
the user selects the cylinder which will be accessed next by
clicking on it, the simulator will move the disk head from
the current cylinder (67) to the selected one (which in this
case is 98). The user can undo his or her scheduling decision
by simply dragging the selected cylinder number to
anywhere outside the practice area. The user can also
change his or her scheduling decisions by simply clicking
on the previously selected cylinder number and moving it to
the location of the cylinder number the user thinks it should
be. When finished, the user can click the “Answer” button
to check if the answer is right. As shown in Fig. 4, the user
is confused about the direction of the disk head after it
services all the requests in the initial direction. This is a
typical mistake my students make.

6 COMPUTERS IN EDUCATION JOURNAL, VOLUME 8, ISSUE 3, SEPTEMBER 2017

Fig. 3. A screenshot of practice mode when LOOK algorithm is selected and six requests are pending.

Fig. 4. A screenshot of practice mode after the “Answer” button is clicked.

SURANAUWARAT: A DISK SCHEDULING ALGORITHM SIMULATOR

7

C. Comparison Mode
The disk scheduling algorithms can be evaluated by

running them on a particular set of disk requests and
computing the total seek length, the total seek time, and the

average seek time. In comparison mode, the user can
compare the performance of all the algorithms at the same
time, as shown in Fig. 5.

Fig. 5. A screenshot of the performance statistics of all the algorithms in comparison mode.

Fig. 6. A screenshot of the simulation results of all the algorithms in comparison mode.

8 COMPUTERS IN EDUCATION JOURNAL, VOLUME 8, ISSUE 3, SEPTEMBER 2017

As in the simulation and the practice modes, the user can
use the default set of disk requests, a user-defined set of disk
requests, or a randomly generated set of disk requests. In Fig.
5, there is a queue of pending disk requests for the following
cylinders: 98, 183, 37, 122, 14, 124, 65, and 67, the initial
head position is 53, and the disk head is moving to toward
cylinder 199. By clicking on the “Show All” checkbox in Fig.
5, the user can also watch the simulations of all the algorithms
at the same time, as shown in Fig. 6. Alternatively, the user
can select only the algorithms of his or her interest by clicking
the checkboxes in front of them in Fig. 5. As in the simulation
mode, the simulation results and the performance statistics can
be saved as an image by clicking on the “Capture” button with
a couple options of how the algorithms will be arranged in the
saved image in terms of rows and columns, as shown in Fig. 5.

As described in section 2, SCAN, C-SCAN, and FSCAN
algorithms move the disk head across the full width of the
disk, even though there may not be any request for the
cylinder at either end of the disk. When there are no requests
for cylinders at either end of the disk, the simulator will show
the disk head movement toward either end in a dotted line to
make sure that students understand the reason why the disk
head is moving over there, as shown in Fig. 6. For the same
reason, when the simulator reports the order in which the
cylinders are serviced using these algorithms, although the
cylinder at either end of the disk will be included, it will be
differentiated from the real disk requests by being put in
parenthesis, as shown in Fig. 5.

V. USE OF THE SIMULATOR
The simulator can be used both in and out of the classroom.

In the classroom, instructors can use the simulator to
demonstrate traditional disk scheduling algorithms. Instructors
can also demonstrate the situation where new disk requests
come in while other requests are being processed, which is
beyond normal textbook examples. On the other hand, the
students can work, experiment, and do more scheduling
problems with the simulator out of the classroom. The
simulator can also be used for self-study of traditional disk
scheduling algorithms. This is useful when class time is tight
or when modern disk technology that is not covered in the
textbook should be discussed in the classroom.

VI. CONCLUSION
This paper presents an intuitive, engaging, and easy-to-use

simulator that animates the concepts of traditional disk
scheduling algorithms. The simulator has the following
operating modes: simulation, practice, and comparison. The
simulation mode animates how a disk scheduling algorithm
works. The practice mode allows the user to make his or her
own scheduling decisions by specifying the order each disk
request will be served and then checking if the answers are
right. The comparison mode allows the user to compare the
performance of different algorithms in terms of the total seek
length, the total seek time, and the average seek time. The user
can also simulate up to 9 algorithms at the same time. The

simulator supports both simple and practical models of disk
requests. In the classroom, instructors can use the simulator to
demonstrate traditional disk scheduling algorithms using
either or both models of disk requests. Outside the classroom,
students can work, experiment, and do more scheduling
problems with the simulator. In the future, the simulator’s
impact on student learning will be assessed.

REFERENCES
[1] J. Cross, D. Hendrix, L. Barowski, and D. Umphress, “Dynamic

Program Visualizations: an Experience Report,” in Proceedings of the
45th ACM Technical Symposium on Computer Science Education,
2014, pp. 609-614.

[2] V. Karavirta and C. A. Shaffer, “JSAV: the JavaScript Algorithm
Visualization Library,” in Proceedings of the 18th ACM Conference on
Innovation and Technology in Computer Science Education, 2013, pp.
159-164.

[3] V. Manickam and A. Aravind, “If a Picture is Worth a Thousand Words,
What would an Animation be Worth?,” in Proceedings of the 16th
Western Canadian Conference on Computing Education, 2011, pp. 28-
32.

[4] C. A. Shaffer, M. L. Cooper, A. J. D. Alon, M. Akbar, M. Stewart, S.
Ponce, and S. H. Edwards, “Algorithm Visualization: the State of the
Field,” ACM Transactions on Computing Education, vol. 10, no. 3,
Article 9, 2010.

[5] C. Smith, J. Strauss, and P. Maher, “Data Structure Visualization: The
Design and Implementation of an Animation Tool,” in Proceedings of
the 48th Annual Southeast Regional Conference, 2010, Article No. 72.

[6] J. Edgar and T. Donaldson, “A novel Sorting Animation: Permuting
Picture Pixels,” in Proceedings of the 14th Western Canadian
Conference on Computing Education, 2009, pp. 29-33.

[7] M. Krebs, T. Lauer, T. Ottmann, and S. Trahasch, “Student-built
Algorithm Visualizations for Assessment: Flexible Generation,
Feedback and Grading,” in Proceedings of the 10th annual SIGCSE
conference on Innovation and technology in computer science education,
2005, pp. 281-285.

[8] J. Urquiza-Fuentes and J. Ángel Velázquez-Iturbide, “A Survey of
Successful Evaluations of Program Visualization and Algorithm
Animation Systems,” ACM Transactions on Computing Education -
Special Issue on the 5th Program Visualization Workshop, vol. 9, no. 2,
Article No. 9, 2009.

[9] P. Saraiya, C. Shaffer, D. Mccrickard, and C. North, “Effective Features
of Algorithm Visualizations,” in Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Education, 2004, pp. 382-
386.

[10] S. Grissom, M. McNally, and T. Naps, “Algorithm Visualization in CS
Education: Comparing Levels of Student Engagement,” in Proceedings
of the 2003 ACM Symposium on Software Visualization, 2003, pp. 87-
94.

[11] C. Hundhausen, S. Douglas, and J. Stasko, “A Meta-Study of Algorithm
Visualization Effectiveness,” Journal of Visual Languages and
Computing, vol. 13, no. 3, pp. 259-290, 2002.

[12] M. Byrne, R. Catrambone, and J. Stasko, “Evaluating Animations as
Student Aids in Learning Computer Algorithms,” Computers &
Education, vol. 33, no. 4, pp. 253-278, 1999.

[13] B. M. English and S. B. Rainwater, “The Effectiveness of Animations in
an Undergraduate Operating Systems Course”, Journal of Computing
Sciences in Colleges, Vol. 26, No. 5, pp. 53-59, 2006.

[14] B. M. English and S. B. Rainwater, COSC 3355 Animations. [Online].
Available:
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/index.ht
m. Accessed on: October 5, 2016.

[15] J. Zandueta, Track Animation. [Online]. Available:
https://sourceforge.net/projects/trackanimation/. Accessed on: October 5,
2016.

[16] R. M. Meyer and M. Verdicchio, “Disk Scheduling,” in Explorations in
Computer Science, 3rd ed., Jones & Bartlett Learning, 2016, pp. 146-
148.

SURANAUWARAT: A DISK SCHEDULING ALGORITHM SIMULATOR

9

[17] S. Robbins, “A Disk Head Scheduling Simulator,” in Proceedings of the
35th SIGCSE Technical Symposium on Computer Science Education,
2004, pp. 325-329.

[18] A. Tanenbaum, “Disk Arm Scheduling Algorithms,” in Modern
Operating Systems, 4th ed., Prentice Hall, 2014, pp. 379-382.

[19] W. Stallings, “Disk Scheduling,” in Operating Systems: Internals and
Design Principles, 7th ed., Prentice Hall, 2012, pp. 487-494.

[20] A. Silberschatz, P. Galvin, and G. Gagne, “Disk Scheduling,” in
Operating System Concepts, 9th ed., John Wiley & Sons, 2012, pp. 472-
478.

[21] J. M. Garrido, R. Schlesinger, K. Hoganson, “Hard Disk I/O
Scheduling,” in Principles of Modern Operating Systems, 2nd ed., Jones
& Bartlett Learning, 2011, pp. 248-251.

[22] G. Nutt, “Optimizing Access on Magnetic Disks,” in Operating Systems,
3rd ed., Addison Wesley, 2004, pp. 182-183.

[23] H. M. Deitel, P. J. Deitel, D. R. Choffnes, “Disk Scheduling Strategies,”
in Operating Systems, 3rd ed., Prentice Hall, 2004, pp. 533-542.

Sukanya Suranauwarat received her
B.Eng., M.Eng., and Ph.D. in Computer
Science from Kyushu University, Japan in
1997, 1999, and 2002 respectively. Since
then, she has been teaching at Graduate
School of Applied Statistics, National
Institute of Development Administration

(NIDA), Thailand. Her research interests include computer
science education, operating systems, and web technologies.

	I. INTRODUCTION
	II. Related Work
	III. Overview of Disk Scheduling Algorithms
	IV. The Simulator
	A. Simulation Mode
	B. Practice Mode
	C. Comparison Mode

	V. Use of the Simulator
	VI. Conclusion
	References

