
USING   COMPUTATIONAL   SOFTWARE   ROOT   SOLVERS:  
A   NEW   PARADIGM   FOR   PROBLEM   SOLUTIONS? 

 
B.  K.  Hodge  and  Rogelio  Luck 

Mechanical  Engineering  Department 
Mississippi  State  University 
Mississippi  State,  MS  39762 

 
Abstract  

Many of the “procedures” for solving 
engineering problems are formulations to solve 
an algebraic equation or a system of algebraic 
equations—to extract roots.  Computational 
software systems, such as Mathcad, 
Mathematica, Matlab, and EES, make possible 
“direct” solutions of root-finding problems in 
which the solution procedure is transparent to 
the user.  These computational systems permit a 
unified approach, a “new” paradigm, to be used 
for the solution to many engineering problems.  
The unified approach consists of three steps: (1) 
formulate a well-posed system of algebraic 
equations, (2) use a computational system root 
solver to do the “arithmetic,” and (3) verify the 
results.  This paper explores the use of the 
unified approach for mechanical engineering 
problems and investigates the pedagogical 
inferences of the unified approach using 
computational software systems in 
undergraduate mechanical engineering 
education.  The unified approach permits the 
student to focus more on the engineering aspects 
of a problem than the “arithmetic” aspects.  
With less time spent on arithmetic, more time is 
available for students to engage is higher-level 
synthesis and understanding.  Although the 
examples in this paper are appropriate for 
mechanical engineering, the paradigm is 
transferable to any engineering discipline in 
which problem formulations result in systems of 
equations. 

 
Introduction 

 
Many of the “procedures” for solving 

engineering problems are formulations to solve 
an algebraic equation or a system of algebraic 
equations—to extract roots.  In general, an 

algebraic equation can be linear or nonlinear 
and a system of algebraic equations can contain 
both linear and nonlinear algebraic equations.  
Recent computational software systems, such as 
Mathcad, Mathematica, Matlab, and EES, have 
made possible “direct” solutions of such 
problems in which the sometimes-laborious 
task, the procedure, of obtaining the solution is 
transparent to the user.  Such equation or root 
solvers allow the students to concentrate on the 
engineering aspects of the problem, sparing 
them from being preoccupied by the details of 
finding the roots; i.e., solving the equations. The 
students can then focus their efforts on applying 
their engineering knowledge and skills to obtain 
a system of equations that represents the 
problem and that is sufficiently descriptive to 
provide a solution; i.e., to obtain a well-posed 
system of equations.  An additional pedagogical 
advantage of using the root solvers is that the 
students are forced to discern whether the 
numerical (or symbolic) answers provided by 
the equation solvers are reasonable. Thus, the 
advent of such computational systems permits a 
unified approach, a “new” paradigm, to be used 
for the solution to many engineering problems.  
For appropriate problems, the unified approach 
consists of three steps: (1) formulate a well-
posed system of algebraic equations, (2) use a 
computational system root solver to do the 
“arithmetic,” and (3) verify the results. 

 
Computational systems provide robust root 

solvers for systems of algebraic equations.  
Reference 1, from NIST, presents a concise 
summary of capabilities of the commonly used 
computational systems.  The “solve-block” 
structure in Mathcad, for example, requires the 
identification of the system of equations, values 
of the known quantities, and initial guessed 
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values for the unknowns to obtain the solution.  
This is in stark contract to line-by-line coding of 
a root-solver procedure (Newton-Raphson, for 
instance) in a higher-level language 
(FORTRAN or C) to solve such a system.   

 
The purposes of this paper are twofold: (1) to 

explore the use of the unified approach using 
computational software systems for mechanical 
engineering problems and (2) to investigate the 
pedagogical inferences of use of the unified 
approach with a computational software system 
in undergraduate mechanical engineering 
education.  From a pedagogical standpoint, the 
unified approach permits the student to focus 
more on the engineering aspects than the 
arithmetic aspects. 

   
Consider the following diverse examples using 

the computational system, Mathcad.  All 
examples will be solved utilizing the three-step 
unified approach: (1) formulate the solution as a 
well-posed system of algebraic equations, (2) 
use the root solver to do the “arithmetic,” and 
(3) verify the results.  Example will be 
presented for an engineering economics 
problem, a vibrations problem, a pipe flow 
problem, a mechanics of machinery problem, 
and a cooling/bypass loop simulation.  Although 
Mathcad is the computational software system 
used in this paper, other computational software 
systems possess similar capabilities and could 
be used equally well. 

 
Examples 

 
Engineering  Economics 
 

A simple example to illustrate the unified 
approach is provided by the capital recovery 
factor of  the  present  worth  of a uniform series 

 
 
 
 
 
 
 

                    

11

1

−⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +

= mn

mn

m
i

m
i

m
i

P
A              (1) 

 
where A is the payment at intervals of m cycles 
during n years, P is the principal, and i is the 
interest rate per year.  The quotient A/P is the 
capital recovery factor.  Tabular values of the 
capital recovery factor are provided in many 
engineering economy textbooks, but the unified 
approach yields solutions without table 
interpolations.  Consider the following example. 

 
Example 1: 
 
(a) If $20,000 is borrowed for 4 years, what 

interest rate is required for monthly 
payments of $500? 

(b) What principal could be borrowed at an 
interest of 6 percent and monthly payments 
of $500 for 4 years? 

 
Solution: 

The solution is provided in Figure 1, the 
Mathcad worksheet.  The solutions for Parts (a) 
and (b) are illustrated in Parts (a) and (b), 
respectively, of Figure 1.  For both solutions, 
the Mathcad solve block structure of Mathcad is 
used.  The solve block is initiated by a Given 
and is terminated by a Find statement that 
specifies the unknowns.  In this case, a single 
equation, Equation (1), with four variables is 
included within the solve block.  The solve 
block can be used to solve for one of the 
variables, given the remaining three.  Thus, 
Parts (a) and (b) of the problem are similar; the 
only difference being the variable specified in 
the Find statement.  Essentially, all problems 
involving the present worth of a uniform series 
can be solved using this same solve block and 
specifying the appropriate unknown in the Find 
statement. 
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Verification: 
Verification for this example consists of 

observing that for both parts of Example 1, the 
“numbers” are similar to what might be 
encountered in securing a car loan.  The results 
are what might be expected, so the first 
verification test is that the results are not 
irrational.  A more precise verification is 
provided in Part (c) of Figure 1.  In Part (c) of 

the figure, a function, A(i,P,m,n), expressing the 
functional relationship for the capital recovery 
factor of the present worth of a uniform series is 
defined and the results are verified by 
substituting i and P, respectively, into the 
function to recover the monthly payment, A.  In 
both cases, the function returns the appropriate 
value. 
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A 6.705% 21000, 12, 4,( ) 500.002=

A 6% 21290, 12, 4,( ) 499.996=  

Part (a) 

Part (b) 
(c) Verification of Solutions 

 
 

Figure 1.  Solutions for Example 1. 
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Vibrations 
 
The normalized amplitude, Amp, of the 

vibration of the door panel of an automobile is 
given by 
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where c is the damping coefficient, ω is speed of 
the engine, and Ωf is the natural frequency of 
vibration of the door panel. 
 
Example 2: 

 
Find the speed of the engine for which the 

normalized amplitude is 2 for Ωf = 20 Hz. 

Solution: 
The solution steps are illustrated in Figure 2.  

Figure 2(a) is a plot of the normalized amplitude 
as a function of motor speed in rpm.  The 
function is double valued in rpm for a specified 
value of the normalized amplitude.  The 
solution is presented in Figure 2(b).  Part (a) of 
the figure indicates that a normalized amplitude 
of 2 occurs at about 750 rpm and at about 1500 
rpm.  These values are used as initial guesses in 
the Mathcad solve block in Part (b) of Figure 2.  
The normalized amplitude function is defined 
and then used in the solve block.  The results are 
858 rpm and 1453 rpm. 

 
Verification: 

The results presented in Figure 2(b) agree with 
the graphical representation in Figure 2(a). 
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(a) Plot of Normalized Amplitude as a Function of Engine Speed (rpm) 
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(b) Mathcad Worksheet 

 
Figure 2.  Solution for Example 2. 
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Pipe Flow 
 
Piping systems are ubiquitous in engineering 

systems and are characterized as series, parallel, 
or network.  Hodge (2) explored the unified 
approach to solving a variety of piping systems 
problems.  Included in Reference 2 are series, 
parallel, and network examples.  The example 
presented herein is different from any of those 
in Reference 2.     

 
The unified approach to piping systems uses 

the energy equation [Hodge and Taylor (3)], 
cast between two stations in a pipe with a pump 
as the fundamental building block, 
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where  is the increase in head of the pump 
and K and C are the minor loss coefficients.  In 
addition, conservation of mass and uniqueness 
of pressure at a point are invoked.  The 
conventional solution “procedures” developed 
for any characterization of piping problem 
satisfy these principles either by formally 
applying them in as part of the problem 
formulation or by using them in a specified 
iterative sequence—the “procedure.”  Solutions 
for 

sW

all series, parallel, and network hydraulic 
piping problems can be formulated as solutions 
to a non-linear equation or to a system of 
nonlinear algebraic equations.   

 
In Equation (1), expressions for the friction 

factor and fully-rough friction factor, fT, are 
needed.  In the laminar regime, the usual 
expression is 
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Several different representations are available 
for turbulent flow.  In this paper the 
representation of Haaland (4) is used. 
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Minor loss terms are sometimes expressed as 
equivalent lengths using the fully-rough friction 
factor, fT, the asymptotic value of the friction 
factor for a given relative roughness.  From the 
Haaland equation, the fully-rough friction factor 
becomes 
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With the aforementioned as the basis for piping 
system problem solution formulation, an 
example of the unified approach will be 
examined and discussed. 
 
Example 3: 

 
Water at 70 F is to be pumped from one 

reservoir to another reservoir located 20 ft 
above the first reservoir.  A pump with a 
characteristic curve (increase in head versus the 
flow rate) 

 

gpmQforQ

QQW s

150000003911.0

004362.0127.033.403
3

2

<<⋅−

⋅+⋅−=              (7)  

 
where Ws is in ft-lbf/lbm when Q is in gpm, is 
in the system.  The system consists of 2000 ft of 
schedule 40 nominal 3-inch commercial steel 
pipe.  Minor losses total K = 1000 and C = 0.  
Find the flow rate the pump will produce in the 
system. 

 
Solution: 
The unified approach solution is provided in 

Figure 3.  Much of the contents of the figure are 
specifying the system boundary conditions, the 
physical properties, the friction factor 
representation, and the units.  As with the other 
examples, the solution is accomplished in the 
solve block.  Prior to the solve block 
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specification, initial estimates of the two 
unknowns, the pump increase in head and the 
flow rate, are provided.  The pump 
characteristic equation, with appropriate units is 
defined as is the energy equation for the system.  
The Find statement contains the two unknowns.  
The pump increase in head and the flow rate, 
the pump-system operating point, are 393 ft-
lbf/lbm and 105 gpm, respectively.  A similar 
worksheet can be used to solve all series 
hydraulic piping problems by suitably 
modifying the solve block and the Find 
statement. 

 Verification: 
The first point of verification is that the flow 

rate, 105 gpm, falls within the specified flow 
rate range of the pump. In Part (b) of Figure 3 
the increase in head of the pump, PWs, is 
computed from the pump characteristic curve 
given the operating point flow rate.  The energy 
equation increase in head requirement, EWs, is 
also computed.  Both values are identical and 
are equal to the returned value, Ws, of the 
solution. 

 
 

gc 32.174
ft lb⋅

lbf sec2
⋅

⋅:=g 32.174
ft

sec2
⋅:=

Define constants and adjust units for consistency:

μ 0.000658
lb

ft sec⋅
⋅:=ρ 62.3

lb

ft3
⋅:=

       Density in lbm/ft 3                 Viscosity in lbm/ft-s

Input the fluid properties:

C 0:=K 1000:=
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Input the pipe geometry:
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Figure 3. Mathcad Solution for Problem 3. 
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Ws 100 ft⋅
lbf
lb

⋅:= (Initial guess of pump increase in head.)

gpm
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⋅:= (Initial guess of flow rate.)
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(a) Solution 
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                                                                                                         (b)  Verification 
 

Figure 3. Mathcad Solution for Problem 3 (Concluded). 
 
 

Mechanisms 
 
The four-bar linkage represents a classic topic 

in virtually all mechanics of machinery courses.  
By using complex notation, two equations 
describing the spatial relationships of the links 
can be derived and the procedure discussed 
herein used to solve the system.  Consider the 
following example. 
 
Example 4: 

 
The four-bar mechanism illustrated in Figure 4 

has links 1, 2, 3, and 4 with unit lengths of 1, 2, 
2, and 3, respectively. Link 4 is fixed to the x- 
axis and is not allowed to move.  Find the 
angles θ2 and θ3 when the θ1 is -30 degrees.  
Show the four-bar link arrangement in a fashion 
similar to that in Figure 4. 
 

 
 

Figure 4.  Four-bar Linkage Schematic. 
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Solution: 
By using Euler's Formula, i.e., polar notation 

or phasors, the links of the mechanism are 
related by the following relationship: 

 
04321

321 =−⋅+⋅+⋅ ⋅⋅⋅ ReReReR jjj θθθ           (8) 
 
Two equations can be obtained by equating the 
real and imaginary parts of Equation (8). 
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The Mathcad solution is presented in Figure 5.  
Initial values are identified, and the solve block 
is used to find the two unknowns, θ1 and θ2.  
The spatial layout is then determined and 
plotted.  In an extended version of this problem, 
the animation capability of Mathcad can be used 
to determine and illustrate the four-bar linkage 
motion for 0 <   θ1 < 360 degrees. 

 
Verification: 

The plot of the mechanism shows the relative 
length of links in the correct proportion since 
the x and y axes have the same scale. As 
expected, the plot shows that the angles  
θ3 44− deg⋅   and θ2 70 deg⋅  are reasonable 
values for the configuration of the four bar 
mechanism when the input θ1 30− deg⋅ . 

 
 
 

 θ 1 deg− 30⋅:=  R4 3:=  R3 2:=  R1 1:=  R2 2:=  
 

 
 Initial guesses: θ 2 0:=  θ 3 0:=  
 

 
 Given 

 
R1 cos θ1( )⋅ R2 cos θ2( )⋅+ R3 cos θ3( )⋅+ R4− 0  

 
 

 

R1 sin θ1( )⋅ R2 sin θ2( )⋅+ R3 sin θ3( )⋅+( ) 0 

 
 
 

 

θ2

θ3

⎛⎜
⎜⎝

⎞⎟
⎟⎠

70

44−
⎛
⎜
⎝

⎞
⎟
⎠

deg=θ2

θ3

⎛⎜
⎜⎝

⎞⎟
⎟⎠

Find θ2 θ3,( ):=  

1 0 1 2 3 4
2

1

0

1

2

Im A( )

Re A( )
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Figure 5.  Solution of Example 4. 
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System  Simulation 
 
Systems of non-linear algebraic equations 

arise naturally in many steady-state system 
simulations.  The use of computational system 
root solvers alleviates considerable 
programming effort and permits the student to 
concentrate on the engineering aspects of the 

problem.  Consider the following thermal 
system simulation example. 

 
Example 5 
Characteristics and specifications for an oil 

cooler system are delineated below.  A system 
schematic is provided in Figure 6.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Schematic for Oil Cooler System. 
 

 
System characteristics: 
Line       D (sch 40, inch)            L (ft)  
  1  3 ½    100             
  2  3 ½   200  

 
Oil properties (constant):  
       ρ = 54.3 lbm/ft3                c = 0.48 Btu/lbm-F 
       ν = 9.8 x 10-5  ft2/sec   Tin = 200 F 
 
Pump characteristic curve:  
   Ws = 214.2 + 0.05Q - 0.0005833Q2 

              (Q in gpm)                                      (10) 
 
Water properties:  mass flow rate = 30 lbm/sec

                                Tin = 70 F 
Heat Exchanger:     A =  400 ft2           (11) 
 
         HX = 0.0045Q1.9          (12) 

 
Determine the exit temperature of the oil. 

 
 

Solution: 
This solution to this system simulation 

problem involves both hydraulic and thermal 
considerations.  If constant thermophysical 
properties are considered, the hydraulics  and 
thermal solutions can be decoupled and the exit 
temperature calculated after the individual pipe 
flow rates are known.  In this example, both the 
hydraulic and thermal portions will be worked 
in a single solve block.  Lines 1 and 2 form a 
parallel network, so the total change in head for 
pipe 1 must be equal to the total change in head 
for pipe 2.  The energy equation, as referenced 
in Example 3, is used to describe the changes in 
heads of the individual pipes.  Once the pipe 
flow rates are known, the temperature of the oil 
exiting the heat exchanger can be determined.  
The determination of the temperature of the oil 
exiting the heat exchanger is a heat exchanger 
analysis  problem  and   proceeds  from  
capacity  
to   NTU   to   effectiveness   to   rating   to   exit  

 

Heat Exchanger 

1 

2 
Pump  

 

Node B 

Q1 QT QT Valve  

Q2 
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Initial guesses for the unknowns are needed to use the solve block.

Q1 125
gal
min
⋅:= Re1 100000:= Cmin 5

BTU
sec R⋅
⋅:= K 2.85:=

Q2 125
gal
min
⋅:= Re2 100000:= C

Cmin

Cmax
:= ξ 0.5:=

HP 216 ft⋅:= HX 216 ft⋅:= NTU 2:= gpm
gal
min

:=

U 10
BTU

hr ft2⋅ R⋅
⋅:= Tout 130 F⋅:= Texit 190 F⋅:=

 
The solve block equations are next defined.

Given

QT Q1 Q2+ Re1
Q1

Ac

ID
υ

⋅ Re2
Q2

Ac

ID
υ

⋅

HX 0.0045ft
Q2

gpm
⎛
⎜
⎝

⎞
⎟
⎠

1.9

⋅

HP 214.2 ft⋅ 0.05 ft⋅
Q2

gpm
⋅+ 0.0005833ft⋅

Q2

gpm
⎛
⎜
⎝

⎞
⎟
⎠

2

⋅−

1

2 g⋅ Ac
2

⋅
Q1( )2⋅ K ff Re1( )

L1

ID
⋅+

⎛
⎜
⎝

⎞
⎟
⎠

⋅
1

2 g⋅ Ac
2

⋅
Q2( )2⋅ ff Re2( )⋅

L2

ID
⋅ HX+ HP−

 

Cmin Q2 ρ oil⋅ coil⋅ C
Cmin

Cmax

U

BTU

hr ft2⋅ R⋅

5.75

Re2
0.8

⎛
⎜
⎝

⎞
⎟
⎠

0.004+
NTU

U Ahx⋅

Cmin

 

ξ
1 exp NTU− 1 C−( )⋅[ ]−

1 C exp NTU− 1 C−( )⋅[ ]⋅−
Tout Tin ξ Tin Twater−( )⋅−

Texit
Q1

QT
Tin⋅

Q2

QT
Tout⋅+

ans Find Q1 Q2, HX, HP, Re1, Re2, Cmin, C, U, NTU, ξ, Tout, Texit,( ):=  
 

Figure 7.  Solution of System Simulation Example 
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Texit 151.615F=Texit ans 12:=

Tout 116.532F=Tout ans 11:=

ξ 0.642=ξ ans 10:=

NTU 1.284=NTU ans 9:=

U 175.017
BTU

hr ft2R⋅
=U ans 8:=

C 0.505=C ans 7:=

Ws 187.551ft=Ws ans 3:=

Q2 260.858
gal
min

=Q2 ans 1:=

Q1 189.142
gal
min

=Q1 ans 0:=

 

 

Figure 7. Solution of System Simulation Example (Concluded). 
 

 

temperature.  An energy balance must be 
performed at node B to determine the exit 
temperature of the oil at it leaves the system.  
An energy balance at node B yields 
 

 
2

2
1

1 T
Q
QT

Q
QT

TT
exit ⋅+⋅=             (13) 

 
Figure 7 delineates the Mathcad worksheet for 

the problem solution.  The solve block contains 
13 equations and the Find function is used to 
determine the 13 unknowns.  The exit 
temperature for the conditions of the problem 
statement is 151.6 F.  Other values of important 
variables are also presented in the figure.  
 
Verification: 

The solution values are all reasonable.  If the 
individual equations describing the system are 
evaluated, all values are consistent.  
 
 
 
 

 
 
 
Pedagogical  Inferences  and  Conclusions 

 
The purpose of this paper is to discuss a 

unified approach to solving many problems of 
engineering interest.  In all the examples 
explored in this paper, the same three steps are 
used.  The treatments of all the example 
problems are identical and emphasize the three 
steps: (1) formulate a well-posed system of 
algebraic equations,  (2) use the root solver to 
do the “arithmetic,” and (3) verify the the 
results.  In this paper, the arithmetic has been 
accomplished by using the Solve-Find structure 
of Mathcad.  Other computational software 
systems (Mathematics, Matlab,….) offer the 
same capability, albeit in different formats, but 
with the same results.  
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Anecdotally, students appreciate the attention 

to problem solution using the three-step unified 
approach.  The use of Mathcad with its Solve-
Find structure relieves the student from 
assimilating different numerical techniques 
(“procedures”) to solve a non-linear equation or 
a system of non-linear equations.  The net result 
is that more involved and more realistic 
problems can be assigned.  With less time spent 
on arithmetic, more time is available for 
students to engage is higher-level synthesis and 
understanding. 
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