
ENTROPY BASED VERIFICATION
 OF ACADEMIC INTEGRITY

 Thomas E. Doyle, Sheng Qian Adrian Ieta
 McMaster University State University of New York - Oswego

Abstract

The usage of online submission provides an

efficient means of facilitating course
components; especially those with large
enrolment. However, this convenience is not
without caveat as student solutions are then as
easily distributed as they submitted for credit.
While services exist to combat academic
dishonesty, such as online comparison
databases, privacy concerns have been raised
about their usage. We have developed and
implemented an entropy based method for the
verification of academic integrity. This tool was
implemented primarily for a freshman
undergraduate programming course with a
yearly enrolment of more than 1000 students.
Even with significant resources and effort
dedicated to ensuring academic integrity, the
result was difficult to quantify. Further
compounding the challenge was the fact that
computer program source code has rigidly
defined constructs and syntax, thus a simple text
comparison could indicate a high level of
similarity that might implying a lower level of
integrity. Conversely, two logically identical
programs could be written with different
variable names where a simple text comparison
could indicate a higher level of integrity. Rather
than performing a straight comparison, our
entropy based method generates a symbolic
library of the file and then analyses the library
structure against all other file libraries as a
measure of academic integrity; this method
defeats the short comings of the aforementioned
methods. This paper will present our entropy
based method and its high level of success
verifying the academic integrity of large sets of
assignment submissions.

Introduction

Assessment of student work is one of the few

methods we have as instructors to communicate
if the student has attained an acceptable mastery
of the subject. As instructors we also use this
“conversation” to gauge our own success at the
transfer of incremental pieces of the pedagogical
puzzle. This feedback is used to refine and
optimize the course for the student to get the
most from the experience. This optimization is
heavily based upon the premise that students
have responded to the best of their ability using
their own work.

When this premise is found to fail, a common

response by the instructor is to reduce the course
weight of the component(s) where academic
integrity may be questioned (e.g. computer
programming laboratories). While this appears
to limit the gains of the dishonest student, it will
also demotivate the honest students by:

1) Placing less emphasis on core aspects of the

course building blocks, and
2) Continuing to reward questionable methods

with high marks.

In the effort to limit the effects that cheating

will have on the overall course assessment
(macro-view), the instructor may actually be
encouraging the cheating because from the
student perspective the cheaters continue to be
rewarded on an incremental basis (micro-view);
this is regardless of how little the component
may be worth.

Considerable time and resources go into

refining courses and assessing the student work.

70 COMPUTERS IN EDUCATION JOURNAL

At first, reducing the weight of the problem
course component(s) appears to be an efficient
method of handling the problem. However, the
result effects all students and their learning
experience.

To address the root of the problem,

verification of academic integrity is required.
While analysis of each assignment by the
instructor is ideal, for large courses it is
impractical. Once the verification task requires
several people, the detection becomes more
difficult and less efficient. In addition, the
burden of proof lies with the instructor which
requires the assembly of documentation and (in
many cases) the filing of the academic
dishonesty charge with the department or
University. The processing of a single
academic dishonesty charge can take an
inordinate amount of time that redirects
significant resources from the operation,
development, and improvement of the course.

In an effort to efficiently handle academic

integrity verification, services such as
TurnItIn.com (http://www.turnitin.com/) have
become a key tool in assessing written
assignments. However, there have been both
academic and legal[1,2] objections to such
services, making the usage of such external
services questionable.

Academic integrity validation for computer

source code poses a slightly different challenge
because the syntax and structure of the logic are
rigidly defined. With the use of some modern
integrated-development-environments (IDE)
even the individual’s own programming style is
reformatted to that of the IDE’s designers. A
number of tools exist for the detection of
programming plagiarism[3-7], two popular
online tools are Measure Of Software
Similarity[8] (MOSS - http://theory.stanford.edu
/~aiken/moss/) and Shared Information
Distance[9] (SID - http://genome.math.uwater
loo. ca/SID/).

Both MOSS and SID offer online analysis

based upon the same principle of information

content comparison. The method presented in
this paper uses a measure of information content
(entropy) by comparing the size of symbolic
libraries generated by a commonly available
compression method.

What we offer is an open and efficient method

of locally comparing student work, a tool to
simplify the verification of academic integrity,
and a quantitative measure for the processing of
academic dishonesty cases.

Background

The first year engineering program at

McMaster University has common curricula.
The academic year is divided into three terms
and the Engineering Computation course runs in
all three (Fall, Winter, Summer). The Fall and
Winter terms each have an enrolment of 450
students and the Summer term normally has 100
students. Students are not required to have any
experience programming prior to entering the
program, but by the end of first year all students
are expected to be proficient in writing their
only software solutions.

The operation of the course requires fifty to

sixty undergraduate teaching assistants to run 10
laboratory and 10 tutorial section per week (10
laboratories and 10 tutorials per term). While
assignments had individualized components
(e.g. based upon student number) the task of
verifying academic integrity by hand was
significant. Detection across lab and tutorial
sections was difficult and time intensive.
Processing such cases was equally as difficult
and generally reserved for the most severe.

Our initial approach to solving the problem of

academic integrity verification was to
investigate the generation of source code
signature waveforms for comparison (similar in
concept to Schleimer[9]) or to require the use of
our own editor (similar to Vamplew’s work[3])
with embedded authorship and checksum
information. However, the entropy based
measure of information content proved to have
an elegant and efficient implementation with

COMPUTERS IN EDUCATION JOURNAL 71

http://theory.stanford.edu/
http://genome.math.uwater/

very positive results; both academically and
pedagogically.

Information and Entropy

As Shannon said, “the semantic aspects of

communication are irrelevant to the engineering
aspects” [10]. In the measure of information it
is not so important what was communicated, but
rather what technically could have been
communicated. For example, in a simple binary
transmission the choice of what can be
transmitted (technically) is 0 or 1; regardless of
the meaning of transmitting a 0 or 1. The
measure of the information (X) in the
communication is given by the logarithm of the
number of communication choices or symbols
(p).

ܺ ൌ (1) ݈݃

The base (b) of the logarithm is somewhat

arbitrary, but with a binary communication the
base of 2 is generally used. For our example, a
single bit is transmitted and either option is
equally possible. The amount of information
communicated here is 1 bit and for any
communication with 2N choices that are each
equally probable, the amount of information
communicated is N‐bits.

However, there is the inconvenience that

communication should have meaning.
Structured communication, the ordered selection
of symbols, cannot have all possible symbols
being equally probable. Consider the English
alphabet: the letter ‘T’ appears much more often
than the letter ‘Z’ in common communication.
Now consider that the probability of the letter
‘T’ being followed by the letter ‘Z’ is
statistically much lower than being followed by
an ‘H’. The measure of information when we
consider the statistical probability of each

symbol in communication is called the entropy
 ሻ. Measuring the information whenܪ)
considering the probability, the expression for n
independent symbols, each with probability p is
written as,

ܪ ൌ െ ሾଵ ଵ݈݃
 , or݃

ଶ ଶ݈݃ ڮ ݈

ܪ ൌ െ ∑

ୀଵ .݈݃

(2)

(3)

Lossless Compression

Compression has two classifications: lossless

and lossy. As the name suggests, “lossless”
compression will produce an identical copy of
the original data when uncompressed. For
example, when compressing a paper for a
conference, you prefer its data returned to the
original, rather than approximated. “Lossy”
compression produces an approximation of the
original data for reduced storage; however, the
original data is lost. Lossy JPEG compression
on photograph data is a common example.

Entropy bounds the theoretical limit on

lossless compression; to go beyond this limit
would require some loss of information, thus no
longer “lossless”. The ideal compression
algorithm would provide an accurate measure of
information.

While no lossless compression method can

provide a perfect calculation of entropy, some
do provide an excellent approximation. The
high level of compression is in part achieved by
the compression application dynamically
generating its own symbol library and
probability statistics. The result is that data is
no longer stored discretely, but instead as a
library of symbols; repeated sequences of
symbols are stored as their own symbol, etc.
For our purposes, the gzip compression method
was used.

72 COMPUTERS IN EDUCATION JOURNAL

START

Load file(i)

Initialize counters
i = j = 0

Preprocess file(i)
Compress(file(i))

j = i + 1

Load file(j)

Preprocess file(j)
Compress(file(j))

j = j + 1

Compare
Compress(file(i))

and
Compress(file(j))

Store
Compare

result

All file(i)
compared to

file(j)?

NO

i = i + 1 All file(i)
loaded?NO

STOP

YES

YES

Academic Integrity Verification

The goal of our application is to quickly

identify problem submissions from large data
sets and provide objective, qualitative data.

Method

Our application employs the algorithm

illustrated in figure 1. Files are preprocessed to
remove commenting and the results are sorted in
descending order.

Results

The results from our academic integrity

verification application are graphed in figure 2
and the top valued comparison displayed in
figure 3.

Figure 2 displays the comparison values of 41

student submissions. The graph contrasts the
average value of similarity (green plane) against
all possible combinations of the 41 student
submissions. This is an introductory
programming course where sections of code
may be supplied for student use, thus the
average similarity cannot be expected to be the
same from assignment to assignment. In
addition to the academic integrity verification
algorithm, the application will also sort which
assignments to review based absolute number,
percentage, or standard deviation. We have also
implemented a grouping algorithm based on
student number.

Figure 3 illustrates one of the core problems

presented; a straight text comparison would not
identify these two submission samples as
duplicates. A cursory visual inspection clearly
shows the code is logically identical with one
submission attempting to appear different using
several different variable names.

 Figure 1: Academic Integrity Verification

Method.

COMPUTERS IN EDUCATION JOURNAL 73

74 COMPUTERS IN EDUCATION JOURNAL

Se
ri
es
1

Se
ri
es
5

Se
ri
es
9

Se
ri
es
13

Se
ri
es
17

Se
ri
es
21

Se
ri
es
25

Se
ri
es
29

Se
ri
es
33

Se
ri
es
37

Se
ri
es
41

10

15

20

25

30

35

40

45

50

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Figure 2: Comparison of 41 student submissions against average similarity.

Figure 3: The top valued comparison for similarity using our entropy based comparison method.

Discussion and Conclusion

By using the approximation of entropy from

the gzip compression algorithm we have
developed an academic integrity verification
system that may be employed privately by the
instructor to analyse a large set of student source
code submissions. The dynamic creation of a
symbol library permits the indirect comparison
of the symbols and overcomes the shortcomings
of straight text comparison.

The academic integrity verification application

is an excellent method of detecting problem
submissions and it provides an objective
measure of similarity relative to all other
submissions. Instructors interested in applying
this tool may download it from our website at
http://www.cybranetics.com.

Future Work

Our goal is to further develop our series of

tools[11-13] that may assist academics in
assessment and data management. Future work
on this application will make the user interface
more intuitive and automate the graphical result.

Bibliography

1. Foster, A., “Plagiarism-Detection Tool

Creates Legal Quandary”, The Chronicle of
Higher Education, May 17, 2002. <
http://chronicle.com/free/v48/i36/36a03701.
htm >

2. Canadian Broadcast Corporation, “McGill

student wins fight over anti-cheating
website”, CBC News, January 16, 2004. <
http://www.cbc.ca/canada/story/2004/01/16/
mcgill_turnitin030116.html >

3. Mozgovoy, M., “Desktop Tools for Offline

Plagiarism Detection in Computer
Programs”, Informatics in Education, v5-1,
pp. 97—111, 2006.

4. Vamplew, P., Dermoudy, J., “An Anti-
Plagiarism Editor for Software Development
Courses”, Proceedings of the 7th
Australasian conference on Computing
Education - Volume 42, Newcastle, New
South Wales, Australia, pp. 83 – 90, 2005.

5. Brin, S., Davis, J., García-Molina, H.,

“Copy Detection Mechanisms for Digital
Documents”, Proceedings of the 1995 ACM
SIGMOD International Conference on
Management of Data, pp. 398-409, San Jose,
California, USA, 1995.

6. Joy, M., Luck, M., “Plagiarism in

Programming Assignments”, IEEE
Transactions on Education, v42-2, pp. 129 –
133, 1999.

7. Parker, A., “Computer Algorithms for

Plagiarism Detection”, IEEE Transactions
on Education, v32-2, pp. 94 – 99, 1989.

8. Chen, X., Francia, B., Li, M., McKinnon,

B., Seker, A., “Shared Information and
Program Plagiarism Detection”, IEEE
Transactions on Information Theory, v50-7,
pp. 1545-1550, 2004.

9. Schleimer, S., Wilkerson, D. S., Aiken, A.,

“Winnowing: Local Algorithms for
Document Fingerprinting”, Proceedings of
the 2003 ACM SIGMOD International
Conference on Management of Data, San
Diego, California, USA, pp. 76 – 85, 2003.

10. Shannon, C., Weaver, W., “The

Mathematical Theory of Communication”,
University of Illinois Press, 1949.

11. Ieta, A., Doyle, T. E., Kucerovsky, Z., and

Greason, W. D. "Challenges and Options
Related to Scaling Raw Scores in
Engineering Education," The International
Network for Engineering Education and
Research. Innovations 2008: World
 Innovations in Engineering Education and
Research, iNEER, Arlington, VA, U.S.A.,
(13p.)

COMPUTERS IN EDUCATION JOURNAL 75

76 COMPUTERS IN EDUCATION JOURNAL

12. Ieta, A., Doyle, T. E., Kucerovsky, Z., and

Greason, W. D. “Enhanced Student
Evaluation Software in Engineering and
Science Courses", Frontiers in Education
Conference 2007, Milwaukee, Wisconsin,
USA, October 2007.

13. Ieta, A., Ieta, R., and Doyle, T. E.

“Aggregation of Grades and Effective
Grading", International Network for
Engineering Education and Research
(iNEER) 2007 Special Volume:
“INNOVATIONS 2007: World Innovations
in Engineering Education and Research.

Biographical Information

Dr. Thomas E. Doyle is an Assistant Professor

in the department of Electrical and Computer
Engineering at McMaster University in
Hamilton, Ontario, Canada. Dr. Doyle is an
ASEE member, an IEEE member, and a
registered Professional Engineer of Ontario.
For additional information you may email
doylet@mcmaster.ca.

Dr. Adrian Ieta is an Assitant Professor in the

department of Physics at the State University of
New York, Oswego, NY, USA. Dr. Ieta is an
ASEE member, an IEEE member, and a
Professional Engineer. For additional
information you may email ieta@oswego.edu.

Sheng Qian was an undergraduate student in

the department of Engineering Physics at
McMaster University in Hamilton, Ontario,
Canada. Mr. Qian was a McMaster Engineering
Undergraduate Research Opportunity recipient.

 ASEE MEMBERS

How To Join Computers in Education
Division
 (CoED)

1) Check ASEE annual dues statement
 for CoED Membership and add $7.00
 to ASEE dues payment.

2) Complete this form and send to
 American Society for Engineering
 Education, 1818 N. Street, N.W.,
 Suite 600, Washington, DC 20036.

I wish to join CoED. Enclosed is my check for
$7.00 for annual membership (make check
payable to ASEE).

 PLEASE PRINT

NAME: _____________________________________

MAILING
ADDRESS: _____________________________________

CITY: _____________________________________

STATE: _____________________________________

ZIP CODE: _____________________________________

	 ASEE MEMBERS
	How To Join Computers in Education Division
	 PLEASE PRINT
	NAME: _____________________________________

