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Abstract 

 
Teaching with technology still remains as a 

challenge. Making judicious choices of when, 
what and how specific tools and pedagogies to use 
in the teaching of a topic can be improved with the 
help of curriculum inventories, training, and 
practices but as new and more capable 
technologies arrive, such resources and experience 
do not often transfer to new circumstances. This 
article presents a case study in which 
computational modeling and simulation 
technology (CMST) is used to improve 
technological pedagogical content knowledge 
(TPACK) of teachers. We report findings of a 
summer training program for both preservice and 
in-service teachers in the Northeastern United 
States. CMST has shown to be effective on both 
teaching and learning. Results show that it helps 
teachers to integrate technology into their teaching 
in a more permanent, constructive, and tool-
independent way. It has also shown to improve 
student learning in a constructive fashion by first 
enabling deductive introduction of a topic from a 
general simplistic framework and then guiding the 
learner to inductively discover underlying STEM 
principles through experimentation. 
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Introduction 
 

Educators structure training and curriculum 
based on learning theories of how the human mind 
works. Recent findings from empirical research by 
cognitive psychologists and neuroscientists have 

created a critical mass to change the way we 
prepare teachers and support their classroom 
instruction. Make it Stick, an ostensibly 
groundbreaking book published recently and 
coauthored by several prominent cognitive 
scientists has turned conventional ideas of 
learning upside down. [9] The book offers many 
sound practices to help students easily retrieve 
content they learned in class, retain it, and apply it 
in different contexts to solve problems. New 
research suggests that repeated, delayed and 
interleaved retrievals make new concepts stick in 
memory longer if the process is effortful (pp. 47). 
Learning is mediated by memory, because human 
brain attempts to interpret new concepts in terms 
of previously registered knowledge and facts. 
However, some degree of forgetting is also good 
for learning because it forces the learner to use 
effort to cognitively engage oneself to recall or 
reconstruct newly acquired concepts through 
different neural pathways or links that exists and 
are retrievable. And, the more links to associated 
concepts, the higher the chances of recalling the 
newly acquired concept when needed later. 
Cognitive retrieval practices attempted at different 
times, various settings and contexts are good 
because every time the recall is attempted it 
establishes more links that will help the 
remembering and learning. Exposure to new 
concepts through links to multiple views from 
different fields of study is, therefore, an effective 
retrieval strategy recommended by cognitive 
psychologists (pp. 49). This is called interleaved 
retrieval practice and it forms a cognitive 
foundation for the interdisciplinary computational 
pedagogical content knowledge (CPACK) 
framework that has been developed recently by 
computational science practitioners and educators. 
[69]  In the following sections, we will describe an 
in-service and a pre-service implementation of 
CPACK and how its findings relate to the current 
literature in engineering education and teacher 
professional development. 
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Interdisciplinary  CPACK  Education 
 

Interleaving retrieval practices by weaving 
together multi-disciplinary features around a 
common topic (i.e., interdisciplinary education) 
has great advantages for gaining deep and lasting 
knowledge but it is not easy for several reasons. It 
would require a more cognitive effort than usual 
and as such, it would slow down the process of 
learning. In college, it would delay graduation and 
in public schools’ packed schedules it would risk 
compliance with local and state-mandated 
curriculum. Technology can be used to speed up 
this interdisciplinary learning but it needs training 
of teachers to teach content in pedagogically 
appropriate ways, thereby requiring a close 
integration of technology, pedagogy, and content 
as shown in Figure 1. Recently, a theoretical 
framework, namely technological pedagogical 
content knowledge (TPACK), has been developed 
by Mishra & Koehler [36] to address challenges of 
T, P, and C integration. Practicing teachers have 
been offered professional development (PD) to 
help them deploy appropriate technologies in the 
classroom, stay up-to-date with emerging 
technologies, and assess efficacies of different 
pedagogical approaches. [10,33] But, due to 
frequent changes in available tools, challenges 
might never go away as far as transferring 
curriculum inventories and PD content to new 
circumstances. Furthermore, teaching with 
technology often requires customization and the 
needed technologies must be both content specific 
and pedagogically suitable at the same time. [28] 
While latest technologies offer more capacity for 
applicability, their optimum utilization may 
necessitate knowledge of tools’ operational 
underlying principles for easier transfer into new 
circumstances and better integration. 
[21,28,44,69,73] 

 
There is an important feature of interdisciplinary 

education that can be best described by Aristotle’s 
wellknown statement, “the whole is more than the 
sum of its parts,” or the theory of Gestalt 
psychology, “the whole is other than the sum of its 
parts,” which means that the whole has a reality of 
its own, independent of the parts. [30] 
Accordingly, educators have noted an emerging 
nature of TPACK when technology, pedagogy, 
and content  are   closely  integrated. [36]     When  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 1: CPACK framework. [69]  
Computational pedagogy is an inherent outcome 
of computing, math, science and technology 
integration. 

 
mathematics, computing, and sciences are 
integrated, as shown in Figure 1, their integration 
gives birth not only to a new content domain of 
computational science, as witnessed by degree 
programs in the past two decades, [32,47,60,76] 
but also a particular computational pedagogy 
which was not among the constitutive domains of 
CMST to start with. [71-72] This multi- faceted 
interdisciplinary knowledge domain has been 
called Computational Pedagogical Content 
Knowledge (CPACK) domain framework, which 
has received a Best Paper award from the TPACK 
community. [69] CPACK involves the use of 
computational modeling and simulation tools in a 
pedagogical way that support both deductive and 
inductive [67,71] approaches to teaching and 
learning. 

 
Computational  Modeling  and  Simulation 

Technology  (CMST) & Relevant  Pedagogies 
 

Modeling and testing has been an important tool 
for scientific and engineering research for 
hundreds of years. Scientists often start 
deductively with a model (e.g., a hypothesis or a 
concept) based on the current research, facts, and 
information. They test the model’s predictions 
against experimental data. If results do not match, 
they, then break down the model into its parts (sub 
models) to identify what needs to be tweaked. 
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They retest the revised model through what-if 
scenarios by changing relevant parameters and 
characteristics of the sub models. By putting 
together new findings and relationships 
inductively among sub models, the initial model 
gets revised again. This deductive/inductive cycle 
of modeling, testing, what- if scenarios, synthesis, 
decision-making, and re-modeling is repeated  
as shown in Figure 2  while resources permit 
until there is confidence in the revised model’s 
validity. [6,47] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Scientific methodology of modeling-
testing-remodeling process used in the conduct of 
research. 
 

In recent years, computational modeling and 
simulation technology (CMST) has been very 
effective in conducting scientific and engineering 
research because computers speed up the model 
building and testing of different scenarios through 
simulations that provide quick feedback to 
researchers in order to improve the initial model. 
[45] CMST’s role in scientific and industrial 
research was proven beyond doubt when 
computational predictions matched behavior of 
physical models in high-stake cases (e.g., safety of 
cars and planes, emissions from engines, and 
approaching storms). Its use was uniquely 
justified when a study was impossible to do 
experimentally because of its size (too big such as 
the universe or too small such as subatomic 

systems), environmental conditions (too hot or 
dangerous) or cost. CMST eventually 
demonstrated to be generating innovation and 
insight, just like experimental and theoretical 
research and this ultimately led to the recognition 
of computation by the scientific community as a 
third pillar of doing science besides theory and 
experiment.[6,47] 

 
While such capacity was available only to a 

small group of scientists in national labs, their 
demand for computationally competent post-docs 
and doctoral students led to graduate programs in 
research universities. A dramatic increase in 
access to and power of high performance 
computing and the drop in its cost in the past 20 
years helped spread the use of CMST tools into 
the manufacturing industry. Driven by market 
needs and trends, rather than empirical research 
into their effectiveness in education, funding 
agencies and colleges started investing in new 
CMST-based BS, MS and Ph.D. degree programs 
across the world. [31,56-57,60,76-78] It was not 
until friendly versions of such tools were available 
and considered for use in K-12 settings that a 
detailed and thorough empirical research was 
undertaken to measure their effectiveness in 
education (see reviews by Smetana & Bell [58], 
Rutten et al. [54], de Jong & Joolingen [14] and 
Yaşar et al. [73]) 
 

Modeling is a simplification of reality ─ it 
eliminates the details and draws attention to what 
is being studied. In education, it enables the 
learner to grasp important facts surrounding a 
topic before revealing the underlying details. 
Tools such as those in Table 1 now make it 
possible for instructors to offer easy 
experimentation in the classroom without having 
to expose students to underlying STEM concepts 
and principles. For example, Interactive Physics 
(IP) and AgentSheets (AS) can be used to create 
many fun things that could engage students into 
science experimentation, either by modifying an 
existing model or creating one from scratch. These 
user-friendly tools can shield students from having 
to know content knowledge of mathematics (e.g., 
differential equations), computing (e.g., 
algorithmic and programming) and science (e.g., 
physics) to conduct scientific experiments such as 
harmonic and planetary motion. 

Model/Concept 

   
Basic concepts, details & facts 
S u b M o d e l s 
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Simulation adds another level of benefit on top 
of easy modeling by providing a dynamic medium 
for the learner to conduct scientific experiments in 
a friendly, playful, predictive, eventful, and 
interactive   way to test hypothetical scenarios. 
For example, in a harmonic motion of an object 
attached to a spring (Figure 3), Interactive Physics 
can provide control buttons to change physical 
parameters such as string constant, mass of the 
swinging object and its initial velocity, intensity of 
gravitational acceleration, among others. It also 
gives the user the ability to change some 
operational parameters, such as the run-time and 
accuracy desired from the simulation. 
Furthermore, it allows the learner to go into the 
initial model’s details and break it into its 
constitutive parts in order to run various what-if 
scenarios. Based on these scenarios and their 
outcomes, the learner can go back to the design 
phase and change the model (spring and box) to 
his desire. This dynamic of making decisions that 
lead to modifications to the initial model based on 
what- if scenarios is an inductive process because 
it lets the learner to put pieces of the puzzle to 
come up with a revised model. [67] 

 
Table 1. A typical list of CMST tools. 

 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 3: An example of harmonic motion by a 
box attached to a spring on a flat surface. 

 
If used appropriately, CMST tools can involve 

students in inquiry-based, authentic science 
practices that are highlighted in the recent 
framework for K-12 science education. [42] A 
growing body of research [3-4,64] identifies 
computer simulation as an exemplar of inquiry-
guided (inductive) learning through students’ 
active and increasingly independent investigation 
of questions, problems and issues. Research into 
the use of computer simulations in science 
education has been reviewed periodically and quite 
frequently in recent years. These include early 
efforts by de Jong & van Joolingen [14] and by 
Bell & Smetana [4] as well as recent efforts by 
Rutten et al. [54] and by Smetana & Bell. [58]  
The article by the Rutten et al. [54] reviewed 
(quasi) experimental research in the past decade 
(2001-2010) and the one by Smetana & Bell [58] 
reviewed outcomes of 61 empirical studies since 
1972. The overall findings support effectiveness of 
computer simulations. In many ways simulation 
has been found to be even more effective than 
traditional instructional practices. In particular, the 
literature shows that computer simulations can be 
effective in: 1) developing science content 
knowledge and process skills, and 2) promoting 
inquiry-based learning and conceptual change. 
Effectiveness of CMST in education is also well 
grounded in contemporary learning theories that 

Interactive Physics (IP): investigate concepts 
without prior physics background. 
http://www.design- simulation.com/IP. 
AgentSheets (AS): create games and 
simulations through agents and rules of 
engagement. 

 STELLA: model a system by a pictorial 
diagram of initial values and rate of change 
equations. http://www.iseesystems.com. 
Geometer’s Sketchpad (GSP): model 
geometrical concepts; compute distances, 
angles & areas. 

 Project Interactivate (PI): online 
courseware for exploring scientific and 
mathematical concepts. 

 Excel Spreadsheets: conduct modeling & 
simulations using a simple algebraic equation 
(new = old + change) for rate of change. 
Texas Instruments (TI) Tools: advance 
graphing tools to conduct algebra, functions, 
and rates of change. 

http://www.agentsheets.com/
http://www.iseesystems.com/
http://www.dynamicgeometry.com/
http://www.shodor.org/
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recognize the role of experience, abstract thinking, 
and reflection in constructing knowledge and 
developing ideas and skills. [16,22,27,38,61]  
Cognitive aspects of CMST are being further 
detailed in a recent article by Yaşar [67]  using a 
computational model of how the mind learns. 
Computational modeling and simulation is no 
longer an adhoc methodology or technology that 
scientists and engineers use in their narrow fields 
of study ─ everything in the universe, including 
matter and mind, is now suspected to behave 
computationally. [68] An awareness of 
computation’s universality could help spread its 
utilization as a pedagogy in the advancement of 
STEM teaching and learning as briefly explained 
in the next section. 

 
CPACK  Teacher  Education 

 
Supported by the National Science Foundation 

through various grants, and in partnership with 
local school districts, namely Rochester City 
School District (RCSD) and Brighton Central 
School District (BCSD), and national 
organizations (Shodor Foundation, Krell Institute, 
and Texas Instruments), we founded a CMST 
Institute in 2002 and have been offering CPACK 
training since then. While we constantly explore 
new CMST tools, we are currently using those in 
Table 1 because of a large repository of artifacts 
and lesson plans we have developed using these 
tools over the past decade. These modules have 
been downloaded by people around the world at a 
rate of 50-80 per day, totaling almost 100,000 
since the database was launched. To this date, 
about 700 in-service and pre-service teachers from 
twenty local school districts have directly 
benefited from the CPACK training in the form of 
summer institutes and credit-bearing college 
courses. Partnering school districts, such the urban 
RCSD and the suburban BCSD, have reported 
using the training modules in their professional 
development days and teacher resources centers 
over the past decade, bringing the total of teachers 
affected by this initiative close to a thousand. 

 
While the CPACK has been an initiative by 

practitioners of CMST in scientific research and 
education, the requirements by the sponsoring 
agency, particularly the National Science 
Foundation’s Math and Science Partnership 

(MSP) program, helped evolve it and assess its 
impact by involving professional evaluators and 
educational researchers from other MSP Research, 
Evaluation and Technical Assistance (RETA) 
awardees. The RETA awardees that took an 
interest in the progress of CPACK work included 
the American Institute for Research, the 
Wisconsin Center for Education Research, 
Technical Education Research Centers (TERC), 
the Concord Consortium, and The Council of 
Chief State School Officers (CCSSO). The 
quantitative and qualitative evaluation 
methodology used by project evaluators were 
based on previously validated methods [11] and 
instrumentations from RETA studies as well as 
those found in TPACK [1,29,55] and PD 
literature. [19-20, 33] What follows are details and 
key findings from our implementation of in-service 
and pre-service CPACK programs. 

 
In-service  Teacher  Education 

 
The preparation of in-service teachers to 

integrate CMST tools and pedagogy into their 
classrooms involved multiple approaches. This 
included a multi-tier in-depth instruction in the 
summer and yearlong activities such as weekend 
workshops as well as mentoring and coaching. The 
summer training was done in three steps by 
incrementally adding a new domain of knowledge 
at each year of training for the first three years. 
The first step included technology knowledge 
(TK) training, the second step included 
technological content knowledge (TCK) training, 
and the final step included teaching of STEM 
content through computational and pedagogical 
tools (i.e., TPACK). Participating teachers 
received 80 contact hours during their first 
summer institute and a minimum total of 200 by 
the end of their third year. They also received 
additional PD hours through TI-certification (~60 
hours), Saturday sessions (~8 hours) and one-on-
one training (~8 hours) via a CMST Coach and or 
Team Leader. Table 2 shows the number of in- 
service teachers who attended the summer 
institute during the life of the initiative from 2003 
to 2008. Almost half of the teachers who attended 
TK training returned for additional TCK training, 
and half of those returned for the final TPACK 
training. 
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Table 2. Number of in-service teachers attending the summer training. 
 

Summer Training (2003-2008) TK TCK TPACK Total 
Math Teachers 110 44 22 176 
Science Teachers 53 26 17 96 
Technology/Special Education Teachers 25 8 4 37 
TOTAL in-service Teachers 188 78 43 309 

 
The Concord Consortium and The Council of 

Chief State School Officers (CCSSO) staff 
members conducted periodic on-site PD surveys 
in order to report back to NSF about our project’s 
progress on the following aspects: 1) Partnership 
effectiveness, 2) Teacher preparation, 3) 
Curriculum and classroom impact, 4) Student 
achievement, and 5) Sustainability and 
institutional change. The quantitative and 
qualitative data collected from our teacher 
participants by these RETA projects was compiled 
along with other MSP projects for the purpose of 
overall accountability to the U.S. Congress. The 
sites and related data were not linked to each other 
in these reports, but based on their reporting, NSF 
highlighted our project in its reports to the 
Congress for its overall impact and as a result we 
were invited to testify before the U.S. Congress on 
behalf of NSF. [26] 
 

The instrumentations used by our project 
evaluators benefited from those of the national 
RETA projects; all of which targeted the 5 areas 
listed above. Additionally, we used a commonly 
known Guskey model of professional development 
evaluation. [19-20] As seen in Table 3, Guskey’s 
model involves examining five critical levels of 
evaluation, which basically correspond to the five 
aspects of project evaluation required by the 
sponsoring NSF program. The research and 
evaluation questions and how the responses were 
gathered followed the general outline in the table. 
Project evaluators collected quantitative data 
through school records, teacher journal entries, 
activity logs, interviews, and reflective answers to 
survey questions. Two independent evaluators 
read the text and coded the text segments to arrive 
at descriptions and common themes. An inductive 
process [11] was used to group these codes in order 
to form broad themes. The project employed 
additional independent experts to assist with 

content development and reviews of professional 
development. 

 
In a survey of 40 participant teachers in 2010 

who had at least two years of training, 94% agreed 
that the training made them more effective in the 
classroom; 87% agreed that it strengthened their 
pedagogical skills; 73% agreed that it 
strengthened their pedagogical content 
knowledge; 100% agreed that training 
strengthened their skills related to modeling and 
simulation; 86% reported that they continue to use 
the hardware, software and other materials made 
available through project in their classrooms; and 
80% believed that their participation served to 
build leadership skills. Districts also reported high 
teacher retention − e.g., at the end of 7 years, 73% 
of participating teachers at RCSD were still 
teaching while 10% had moved to lead positions. 
This is better than the ~50% national retention 
rate. [41] Furthermore, according to district 
officials [12] the training helped retain veteran 
teachers and drew more and better teachers to an 
urban school with a hard time recruiting teachers 
because of the well-known urban problems. [35] 

 
The percent of teachers feeling prepared to teach 

with computational tools and methodology after 
the first year TK training averaged as follows: 50% 
were confident about their preparedness and the 
remainder felt that they were “probably” prepared. 
After the second year of TCK training, 50% felt 
“definitely” prepared to use modeling with the 
remainder feeling “probably”. The ongoing annual 
data suggested that after their first summer 
training, while knowledgeable about the CMST 
tools, teachers did not immediately feel fully 
prepared to put their training into practice. In fact, 
what teacher data revealed is that it was not until 
their third year of training that involved fully 
using CMST pedagogy and tools that the average  
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Table 3: Guskey’s 5-level evaluation of Professional Development as applied to the CPACK project. [19-20] 
 

 
Evaluation Level 

 
What Questions Are Addressed: 

How Will Information Be 
Gathered? 

1.Participants’ 
(Teacher) Reactions 

Did they like it? 
Was their time well spent? Did the material make 
sense? Will it be useful? 
Was the leader knowledgeable and helpful? 

Pre- and post-activity 
questionnaires administered 
at the beginning and end of 
activity sessions 

2. Teacher Learning Did participants (teachers) acquire the intended 
knowledge and skills? 

Paper-and-pencil 
instruments, Simulations, 
Demonstrations, 
Participant reflections (oral 
and/or written), 
Participant portfolios 

3. Organization 
Support & Change 

Was implementation advocated, facilitated and 
supported? 
Was the support public and overt? 
Were problems addressed quickly & efficiently? Were 
sufficient resources made available? 
Were successes recognized and shared? What was the 
impact on the organization? 
Did it affect the organization’s climate & procedures? 

District and school records 
Minutes from follow-up 
meetings 
Questionnaires 
Structured interviews with 
participants and district or 
school administrators 
Participant portfolios 

4. Teacher Use of 
New Knowledge and 
Skills 

Did participants effectively apply the new knowledge 
and skills? 
To what degree are participants actually implementing 
new knowledge and skills? 

Questionnaires 
Structured interviews with 
participants and their 
supervisors 
Participant reflections (oral 
and written) & portfolios 
Direct observations 
Video or audio tapes 

5. Student Learning 
Outcomes 

What was the impact on students? 
Did it affect student performance or achievement? Did 
it influence students’ physical or emotional wellbeing? 
Are students more confident as learners/readers? Is 
student attendance improving? 
Are dropouts decreasing? 

Math 8, Science 8 exams 
Regents exams: Math, 
Biology, Chem. and Physics 
Course Enrollments, report 
cards & achievement scores. 
Unit tests 
Questionnaires 
Structured interviews with 
students, parents, teachers, 
and/or administrators 
Participant portfolios 

 
teacher felt confident and comfortable. This is 
consistent with the PD literature. [5] 

 
When mastering new skills or strategies, the 

learner typically advances through a predictable 
series of learning stages. [23] At the start, the 
learner is usually halting and uncertain as he or she 
tries to use the target skill. With feedback and 

much practice, the learner becomes more fluent, 
accurate, and confident in using the skill. This 
process was typical of the CMST learners. To add a 
vital piece to findings in the literature, [5,23] our 
research suggested that a significant period of 
authentic practice in the classroom between 
training sessions was also critical in changing 
teacher’s behavior and the classroom environment 
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(in addition to the minimum of 80 contact hours to 
effect changes in teachers’ instructional behaviors 
and a minimum of 160 contact hours to effect 
changes in the classroom environment). Our data 
implies that in this model the learning process for 
the average CMST Teacher appeared to occur in 
four overlapping stages as follows. [23] 
 

1.  Acquisition. The teacher has begun to learn 
how to complete the target skill correctly but 
is not yet accurate or fluent in the skill. 
 

2.  Practice. The teacher is able to complete the 
target skill accurately but works slowly. The 
goal of this phase is to increase the teacher's 
fluency with the tools and pedagogy. 

 
3.  Implementation The teacher is accurate and 

fluent in using the target skill but does not 
typically use it in different situations or on a 
regular basis. The goal of this phase is to get 
the teacher to use the tools and pedagogy in 
the widest possible learning situations. 

 
4. Assimilation The teacher is accurate and 

fluent in using the skills learned. He or she 
also integrates the skill regularly in learning 
situations and is able to modify or adapt the 
skill to fit novel task-demands or situations. 

 
Annual surveys of teachers showed that usage of 
the tools in the classroom was directly linked to 
the amount of training teachers received. All 
trained teachers reported that on a daily basis they 
used laptops for presentations, graphing 
calculators for math instruction, and electronic 
smart boards for interactive lessons. In post-
training journals, while only 60% of the teachers 
reported occasional use of modeling tools in their 
classrooms after initial TK training, 78% of 
teachers reported that they used these tools 
regularly after going through the TPACK training. 

 
In a 2007 survey of 65 active teachers who had 

received at least two years of training, many 
reported a significant use of modeling tools for 
both classroom instruction and special projects 
(see Table 4). It appears that the higher the grade 
level, the more regularly these tools were used in 
the classroom. In the survey, teachers who 
reported regular use of modeling tools agreed that 

using such tools in their classrooms significantly 
increased student engagement. As seen in Figure 
4, students in higher-grade levels found 
computational modeling more engaging in both 
math classes (grades 7-8: 77% vs. grades 9-12: 
90%) and science classes (grades 7-8: 75% vs. 
grades 9-12: 85%). Modeling was even found 
helpful to non-traditional (special education) 
learners (Figure 5); again the higher the grade 
level the higher the engagement: math classes 
(grades 7-8: %76 vs. grades 9-12: 100%) and 
science classes (grades 7-8: 75% vs. grades 9-12: 
85%). 92% of surveyed teachers agreed that 
computational inquiry made math and science 
concepts more comprehensible to students. 72% 
of math, and 31% of science teachers reported 
observed improvement in problem solving skills. 
Student reaction to modeling (versus traditional 
techniques) was found to be 97% favorable in 
math and 77% in science classes. While science 
classes utilized technology less due to limited 
access and lack of science-related modeling 
examples, in instances where it was utilized, a 
deeper understanding of science topics was 
achieved, compared to math topics (83% vs. 76%). 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Student engagement per grade level. 

Table 4: 

Grade 

Level 

Frequency 

Regularly Special 
Project
 

No 

7-8 Math 46% 46% 8% 

9-12 Math 60% 35% 5% 

7-8 Science 25% 75% 25% 

9-12 Science 54% 38% 8% 

Did CMST increase student engagement? 

100% 
80% 

60% 

40% 

20% 

0% 

Agree 

Disagree 

Uncertain 

Math Math  Science  Science 
7-8 9-12 7-8   9-12 



COMPUTERS IN EDUCATION JOURNAL  59 

 
Figure 5: Impact on non-traditional learners. 

 
To further triangulate self-reporting data by 

teachers, annual student achievement data were 
analyzed in the partnering school districts via 
report cards and standardized test scores. While 
we cannot fully isolate the impact of teacher 
training from other contributing factors, an 
upward district-wide trend was noted in both 
urban and suburban districts during the life of the 
initiative from 2003 to 2008 (see Tables 5 and 6). 
The percentage of students receiving a Regents 
diploma increased significantly from the baseline 
(RCSD: 21%  59%, BCSD: 84%  95%). The 
initiative exposed students from the urban district 
to college experiences and opportunities, and this 
may have led to an increased interest (78%  
83%) in both 2-year and 4-year college 
enrollments over the period examined. 
Furthermore, the passing rate (>65/100) in NY 
State Grade-8 Math exam increased in RCSD 
from 10% to 33%, while the passing rate in NY 
Regents Math-A exam (Grade 11-12) also 
increased from 13% to 67%. Passing rate in 
sciences also increased in areas such as Physics 
(3%  22%) and Chemistry (9%  27%). At 
BCSD, passing rates improved in mathematics 
(Math-A: 51%  99%) and sciences (Physics: 
52%  78%). The number of students taking 
General Physics at Brighton increased from 50% 
to ~100% and the number of students taking AP 
Physics also doubled. Student passing rates at both 
districts seemed to reflect relative participation of 
district’s math and science teachers in the 
initiative. All of the improvements have been 
found to be statically significant for sample sizes 
from each district. 
 
 
 

 

While cohorts of 8th grade male and female 
students from both districts had a gap in their 
average math performance at the beginning of the 
initiative, not only were the gaps closed but also 
reversed four years later (12th grade) as shown in 
Table 7. At RCSD, while both male and female 
students did much better than four years earlier, 
the graduation rate of the same cohorts still 
reflected a gender-based trend in performance 
growth, favoring  female students. To examine 
whether the difference is statistically significant, 
we calculated the two-proportion z-scores 
assuming a normal distribution approximation 
(Brase & Brase 2012). The sample sizes for male 
and female students were roughly the same at both 
districts, with about 1200 at RCSD and 150 at 
BCSD. The column p indicates the confidence 
level that the difference between males and 
females may be due to a nonrandom effect. 
Normally, any confidence level below 90% is less  
than significant. Here, with more than 90% 
confidence level female cohorts outperformed 
male cohorts in both math performance and 
graduation rates. This is consistent with gender- 
based response to AgentSheets as reported by 
Repenning. [52]  
 

The main goal of the sponsoring No Child Left 
Behind program was to train as many teachers as 
possible to potentially create a district wide 
impact on student achievement scores. As a result 
we trained twice as many as we had committed to 
(see Table 2). While the goals of the sponsoring 

Table 5: Student achievement at RCSD. 

School District Passing Rate > 65 2002 2008 
 
 
RCSD: 35,000 
students & 400 
MST teachers 

Grade 8 Math 10% 44% 
Grade 12 Math-A 13% 67% 
Grade 12 Physics 3% 22% 

HS Diploma 20% 56% 

Table 6: Student achievement at BCSD. 

School District Passing Rate > 65 2002 2008 
 
 
BCSD: 3,000 
students & 40 
MST teachers 

Grade 8 Math 89% 91% 
Grade 12 Math-A 51% 99% 
Grade 12 Physics 52% 78% 

HS Diploma 84% 95% 

60% 

Is CMST approach more helpful to non- 
traditional learners? 

Very Much 

40% Moderately 

20% Not at all 

0% Don't know 

Math Math  Science  Science 
7-8 9-12 7-8   9-12 
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Table 7: Gender-based response to CMST at RCSD & BCSD. 
 
 
 
 
 
 
 
 
 
 
 
 

agency were met, as witnessed by gains in the 
standardized test scores reported by partnering 
districts, no comprehensive research was done by 
the project to more closely link the gains in 
student achievement scores to the teaching and 
learning resulted from the initiative. By the time the 
goals of sponsoring NSF program shifted from 
‘leaving no child behind’ outreach to ‘researching 
the interventions’ we had almost run out of control 
groups in partnering school districts’ math 
classrooms. The initiative invited science teachers 
but limited access to computer labs, skepticism 
about use of technology, and inadequate number 
of readymade curricular modules discouraged 
many to invest in trainings that lacked significant 
science content and representative lesson plans. 
By the end of the project while almost all 
secondary math teachers in RCSD and BCSD 
received training and yearlong PD, only 20% of 
science teachers took part. 

 
In final years of the study, when focus shifted 

towards researching the intervention, a few 
treatment- control comparisons were conducted. A 
pair of CMST and non-CMST high school teachers 
from the same school taught properties of 
quadrilaterals in a mathematics class. The CMST 
teacher used GSP in a class of 24 pupils while the 
non-CMST teacher used conventional methods in a 
class of 14 pupils. Both teachers conducted the 
same unit test. Even though the CMST teacher 
taught a more crowded class, his classroom 
average was 82.5 versus 49.5 for the other class. 
The second study involved a math triathlon 
similar to Regents Math A and B tests involving 
use of TI graphing calculators. Scored by external 
judges, including teachers and college faculty, this 
study revealed that students taught by CMST 

teachers outperformed other students in all 
categories: Math-A: 60.26 vs. 49.54; Math-B: 
71.9 vs. 55.6; and 7-8 Grade Math: 64.0 vs. 58.6. 
These findings are consistent with previously 
reported data on the impact of CPACK 
professional development on teaching and 
learning in Yaşar et al. [73] as well the 
pedagogical [70-71] and cognitive aspects [67] of 
computational modeling and simulation 
methodology. 

 
Pre-service  Teacher  Education 
 

The curriculum and lesson plans database 
developed by participation of in-service teachers 
provided content to three general education 
courses (CPS 101 Introduction to CMST 
Principles, CPS 105 Games in Sciences, and CPS 
302 Science, Technology, and Society) and a pre-
service methods course (NAS 401/501 C-MST 
Methods and Tools) in the college’s teacher 
education program. These courses have become 
part of the NSF Robert Noyce Scholarship 
program since 2012 to educate a new cadre of 
computational STEM teachers whose responses 
are being reported in this section. Table 8 shows 
enrollments in the pre-service methods and tools 
course (NAS 401/501). The content of the NAS 
course is similar to the first year TK training (i.e., 
exposure to the tools listed in Table 1) received by 
in-service teachers. 

 
The major purpose of the Noyce program was to 

recruit pre-service science and mathematics 
teachers and improve their computational and 
pedagogical skills. So far, as shown in Table 9, the 
Noyce program has enrolled 16 interns 
(undergraduate students who have demonstrated

 2001-2002 2005-2006 
Male Female Male Female z score p (%) 

R  
C  
S  
D 

Math Cohort 13% 10% 41% 49% 3.97 99 
Graduation Rate  34% 44% 5.06 99 

B  
C 
S 
D 

Math Cohort 92% 84% 93% 93% 0 0 
Graduation Rate  85% 90% 1.29 90 
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Table 8. Number of pre-service teachers enrolled in the NAS methods and tools course. 
 

Courses 2003-2007 2008-2012 2013- 
2015 

Total 

NAS 401/501 C-MST Tools for Teachers 113 107 105 325 
 

Table 9: Profiles of Noyce scholars and interns. 
 

 Cohort I Cohort II Cohort III Cohort IV 
Graduate 5 8 5 2 
Undergraduate 6 9 3 5 
Interns (Undergraduate) 5 10 1 0 
      

some interest in teaching as a career) and 50 
scholars (undergraduate and graduate students 
enrolled in the college’s teaching certification 
program). Cumulative demographics for all 
cohorts (I through IV) indicate a distribution of 
55% female and 45% male students. The interns 
have no obligations for the summer support they 
get other than taking a CMST course (e.g., CPS 
101) afterward but the scholars are required to 
serve in a high-needs school district for the tuition 
support they receive prior to completion of 
teaching certification. Programmatic requirements 
for the scholars include academic preparation in 
three domains, including a) content area, b) 
educational methods, and c) computational 
pedagogy. Besides content and education courses, 
they are required to take CPS 101 and NAS 
401/501 courses and attend an intensive two-week 
capstone experience in the summer to develop 
skills of integrating computational technology 
with content teaching in their subject areas. 
 

One of the biggest challenges facing TPACK 
teacher education is to teach pre-service students 
how to judiciously choose the pedagogical 
technologies that can help them teach a topic in 
their content areas. Given the availability of 
multiple tools these days, teachers and pre-service 
students are faced with the burden of mastering a 
good many before making judicious choices. A 
tool-independent education could remedy the 
situation as mentioned earlier if the underlying 
mathematical and computational principles of 
modeling and simulation technology are learned. 
The plan was to have the Noyce scholars learn 
these principles in the CPS 101 course. Also, 
while the original plan included only one summer 

experience, based on our experience from in-
service training we added 2nd summer 
experiences to give scholars additional time and 
support to further improve their CPACK skills 
before graduation. All in all, the CPACK pre-
service training was similar to the multi-tier in-
service training except that the pre-service 
students had an additional opportunity to learn 
mathematical and computational principles of 
modeling and simulation tools. 

 
Since the beginning of the Noyce initiative in 

2012, project evaluators have conducted focus 
groups interviews and pre- and post-activity 
surveys. These surveys were developed based on 
previous studies in the literature on how to 
measure TPACK [1,24-25,29,55] and general PD 
skills. [19-20,33,65] While the TPACK literature 
usually covers general information technology 
skills, our focus has been rather on 
interdisciplinary computational technology skills. 
Noyce students were given an annual satisfaction 
survey at the end of the summer course. An 
inductive approach [46] was used for analyzing 
the participants’ responses to the open-ended 
questions. The inductive approach allowed for 
themes to emerge from the data instead of 
predetermined patterns. First, the data was read 
carefully and core categories were developed to 
describe the participants’ perceptions about using 
computational modeling as an instructional method 
including topics, purposes, instructional 
approaches, and challenges. The data was then 
organized in a matrix to look for cross-case 
themes. 
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The quantitative Likert-scaled surveys initially 
attempted to measure student satisfaction with 
workshop content, learning new software skills 
and principles of computational modeling and 
simulation as well as benefits of group work and 
projects. A typical survey response from 14 
students in 2014 is shown in Table 10. As the 
project evolved and new personnel were added, 
surveys attempted to measure additional 
responses, particularly the following values as 
shown in Table 11 [65]: 1) Intrinsic Value (IV); 
questions 1- 10: How much pre-service teachers 
enjoyed engaging in the collaboration among 
STEM subjects – i.e., integration of technology, 
science, and mathematics. 2) Attainment Value 
(AV); questions 11-17: How much importance 
pre-service teachers place on doing well in their 
computational modeling coursework. 3) Utility 
Value (UV); questions 18-26: How likely pre-
service teachers feel that being successful in the 
creation of the STEM model will lead to success 
integrating STEM content in their future 
classrooms. Table 11 shows average scores (out of 
5) from 2015, which we will mention later. Here, 
Pre-activity average scores for all 3 groups (IV, 
AV, and UV) are high, indicating that these pre-
service students had an overall positive attitude 
coming into the workshop. From pre-activity 
intrinsic value scores, it appears that students 
came in with a strong interest and motivation, and 
they had high expectations (average of questions 
1-10 is 4.12). Post-activity average scores 
improved for every question; on the average it 
went up about 5% for all groups. The consistent 
improvement in all categories points to a favorable 
trend. However, because of the sample size, we 
cannot make any significant statistical inferences 
and generalizations. 

Due to changing logistics and project personnel, 
we have not been able to conduct a longitudinal 
study to see the evolution of student responses 
over the 4-year duration of the project, but we 
were able to conduct a study on the effect of 
training amount on a cohort of students. 
Preliminary results were presented in 2014 
Association for Science Teacher Education [39] 
and EDULEARN Conferences. [40] Additional 
data since then indicates that participants’ 
perception of CMST-based instructional methods 
has been highly positive after the training.   In 
addition to the focus group interviews, semi-
structured interviews with 6 participants (3 
sciences and 3 mathematics) were conducted a 
semester after the initial summer training. 
Interpretive, qualitative analysis of open-ended 
questions and interview transcripts indicated that 
students perceive that computational modeling can 
be used to help them understand science concepts 
in various ways, including visualization of science 
concepts, improving critical thinking and problem 
solving skills, and understanding real-world 
application of mathematics. Pre-service teachers’ 
perception of what technology knowledge (TK), 
technological content knowledge (TCK), 
pedagogical content knowledge (PCK), and 
technological pedagogical content knowledge 
(TPACK) means improved after their 1st year 
exposure to CMST tools, as shown in Table 12. 
Understanding of computational modeling 
increased their interest in teaching as unanimously 
stated by expressions such as “I am more 
interested in teaching than ever and I hope to 
create unique lesson plans and laboratory modules 
utilizing modeling and simulation technology.”

 
 

Table 10: 2013 survey Very satisfied Somehow satisfied Not satisfied None of these 
1. Workshop content 8 4 0 0 
2. Learning new software skills 9 5 0 0 
3. Learning CMST principles 8 6 0 0 
4. Project based learning 14 0 0 0 
5. Group work (collaboration) 8 5 1 0 
6. Instructors’ knowledge and skills 12 2 0 0 
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Table 11: Responses by pre-service students before and after the 2015 summer training. 
 
Please indicate how you feel about the following statements by circling the best representative of 

your perspective. SA = Strongly Agree (5); A = Agree (4); N = Neutral (3); D = Disagree (2); 

SD = Strongly Disagree (1) 

Average 
Score 

Pre Post 
1 I am committed to developing program skills to integrate tech into teaching cross cutting 

 
4.1 4.2 

2 I want to continue developing programming skills to teach cross cutting concepts. 3.9 4.1 
3 Technology can be used to motivate learning of science and math concepts. 4.8 4.9 
4 I would enjoy designing instruction by combining math and science concepts with technology. 4.0 4.5 
5 I want to pursue computational modeling as a means to teach STEM content. 3.7 4.0 
6 I like integrating technology into the instruction of science and math. 4.4 4.5 
8 I would enjoy integrating modeling into the teaching of my content. 4.1 4.2 
9 I would enjoy teaching STEM content through modeling. 4.0 4.3 
10 I enjoy combining modeling with the teaching of content within my major. 4.1 4.2 
11 I value modeling as a way to integrate science and mathematics content. 3.9 4.3 
12 Mathematics is important for modeling real world problems. 4.3 4.6 
13 Technology is important for teaching across the curriculum. 4.5 4.7 
14 It is important to integrate modeling programs with instruction of science. 4.1 4.3 
15 It is important to integrate modeling programs with instruction of math. 3.9 4.0 
16 Realistically, modeling can be used as a means to teach mathematics. 4.1 4.3 
17 Modeling is an important tool for teaching cross cutting concepts. 4.1 4.1 
18 I am developing modeling skills that can be used to teach in my content. 4.0 4.1 
19 I am confident I can model mathematical concepts. 3.4 3.8 
20 I can use modeling to design teaching modules. 3.7 4.0 
21 I am confident I can model the cross cutting concepts. 3.4 3.8 
22 I am confident I can provide problem-solving opportunities using models. 4.1 4.2 
23 I am confident I can model scientific concepts. 3.9 4.0 
24 I am confident I can combine scientific and math content to teach the cross cutting concepts. 3.9 4.3 
25 I can model mathematics and science concepts using technology. 4.1 4.3 
 

Participants felt after their initial exposure that 
they needed more training and experience to 
practice integrating technological content 
knowledge (TCK) with technological pedagogical 
knowledge (TPK) in order to teach topics in their 
areas of teaching. Based on this input, in the 
following years, a 2nd summer workshop was 
added to the program. 
 

The 2nd summer experience included a review 
of CMST principles to make sure students who 
had not taken CPS 101 had some understanding of 
tool-independent operation of CMST tools. This 
involved replicating some of the earlier 
simulations ─ done with tools in Table 1 ─ using 
Excel and programming languages such as freely 
available Scratch (scratch.mit.edu). Evaluators 

asked open-ended questions through focus group 
interviews and Likert-scaled questions through 
surveys. Table 13 shows quantitative responses to 
programming tools from a class of 14 pre-service 
students. Interactive Physics (IP) and AgentSheets 
(AS) are easy to use because of their graphical user 
interface but their multiple features give an 
impression of complexity that a learner may never 
feel proficient enough to overcome. 

 
The response to using Scratch and Excel has 

been overwhelmingly positive in comparison to 
the tools, such as IP and AS, that they had been 
using since the first training. While Scratch and 
Excel are   simple tools, they enable students to see 
what computations are done and how they are done 
to model and problem and simulate its dynamics. 
For example, the harmonic motion done with 
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Interactive Physics (Figure 3) is replicable in 
Excel or Scratch by using a simple algebraic 
formula, new= old + change, that can be applied to 
position (xnew = xold + dx) and velocity (vnew= 
vold + dv) of a spring-driven object at times (tnew 
= told + dt) separated by an interval of choice dt. 
Here, change in x and v can be computed via dx= 

v · dt and dv= a · dt if acceleration (a = 
Force/mass) is known. Since the force applied by 
a spring with a stiffness k to an attached object of 
mass m is F= - k · x, then a= - (k/m) · x. A simple 
iterative computation, as shown in Table 14, can 
then be used to generate position and velocity 
profiles as predicted by the IP in Figure 3. 

 
Table 12: Pre-service teachers’ perceptions of using CMST for teaching based on TPACK framework. 

 
TPACK Category Before the program After the program 

TK MS office/Excel etc. Knowledge of using CMST tools 

TCK Visualization of small 
scale and unobservable 
phenomena or complex 
system. 

Recognition of the differences between CMST tools 
to represent and teach certain science and math 
concepts. 

TPK Motivation/Interest Recognition of the benefits of using CMST tools for 
improving teaching efficiency, student engagement, 
motivation, and classroom management. 

PCK  Feeling more comfortable integrating science and 
math concepts. Recognition that CMST reinforces the 
connections between STEM fields. 

TPACK  Concrete ideas of how CMST tools can be used for 
improving student understanding of science and math 
concepts, inquiry skills, and problem solving. 
Recognition that CMST tools can help teach difficult 
concepts such as those involving abstract ideas and 
extremely small-scale or global phenomena. 

 
Table 13: Responses to question of “How helpful are these tools for learning computational modeling.” 

 
 Very helpful Somewhat helpful Not helpful I did not understand it well 

Interactive Physics (IP) 3 4 4 3 
AgentSheets (AS) 11 3 1 0 

Scratch (programming-based) 14 0 0 0 
Excel (computation-based) 10 4 0 0 

 
 

 
 
 
 
 
 
 
 
 

 
 

Table 14: Steps to simulate the harmonic motion. 
 
Input initial position (x), velocity (v), and time (t) Input 
time step (dt), maximum time (T), mass (m) While t <=T: 

Print position (x), velocity (v), and time (t) 
Compute force: F = - k · x 
Compute acceleration: a = F/m 
Compute velocity: v = v + a × dt 
Compute position: x = x + v × dt 
Update the time: t = t + dt 

End of While Loop 
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One of the most important benefits of learning 
fundamentals of computational modeling is to 
understand that a computation is only an 
approximation of the reality and that its accuracy 
increases if we use smaller time steps (dt) ─ the 
smaller the step, the more data points to compute. 
There is cost for accuracy. Another important 
benefit is that a strong link gets established 
between computing and natural sciences through 
the computation of change because computation 
of change in position and in velocity requires 
computation of acceleration, which itself requires 
knowledge of the Force that is causing the motion. 
Learning principles of modeling and simulation 
can interest computer science majors into learning 
laws of natural sciences. 

 
While computational modeling and simulation is 

as an effective pedagogy [71] to expose non-
science majors to STEM concepts in an 
incremental fashion by using tools that hide the 
underlying mathematics and science involved in 
the simulations, it can also motivate STEM majors 
to learn computer programming. By using 
multiple tools (IP, Excel, and Scratch) to solve the 
same problem, learners    get    a    chance    to     
weigh advantages of each tool and conclude first-
hand that more accurate and faster   computation   
of    new =old + change   for  a large number of  
data  points  will  require  computer programming. 
The responses by pre- service math and science 
students in our program are consistent with such 
expectation as they indicated a strong desire to 
learn and teach programming and computational 
modeling to young students (see Table 15). So, 
learning fundamental operation of computational 
and simulation methodology and being able to 
generate the same simulations with multiple tools 
seem to be an effective  way of  giving pre-service  

 

teachers the high confidence and the choice that 
they need to judiciously and comfortably choose 
what tools to use with the teaching of a specific 
topic. 
 

Conclusion 
 

Effectiveness of computational modeling and 
simulation technology in teaching and learning 
has been reported extensively in this manuscript. 
What our work adds to the literature is more 
complete and user- friendly understanding of the 
cognitive and pedagogical aspects of CMST for 
engineering educators, along the lines of what 
other studies have done for science educators. [67-
78] Our previous studies have generally reported 
in-service and pre-service education programs 
separately, and this is the first attempt to put them 
together within a single framework, the CPACK. 
As stated before, CPACK is a special case of  
TPACK in which the technology employed is 
computational modeling and simulation 
technology. [69] Results from our in-service and 
pre-service TPACK experience show that 
fundamental knowledge of how a particular 
technology works could help teachers to integrate 
it into their teaching in a more permanent, 
constructive, and tool-independent way. This 
TPACK knowledge is often of interdisciplinary 
nature and it might require a substantial amount of 
training. Logistically, it is easier to include such 
preparation of teachers in a pre- service program 
as it can be spread into several courses and 
capstone experiences. In our program, while only 
a quarter of in-service participants reached a 
mastery level of CMST principles within a 5-year 
timeframe, all of the pre-service participants 
accomplished it in just two academic years. 
 

 

Table 15: Common themes from interview transcripts 
• Scratch is really useful to look at parts of different models and see the math and the physics behind it. It 

was really a good exposure to those things and it kind of connects everything together. 
• Scratch allows students to see what’s going on a little bit better; plus you can see what other people have 

done. You can look at their code and see what goes on. It’s so simple that even a nine-year-old can do it. 
• I went home and showed my daughter Scratch. Within 5 minutes she created a program. And, that really 

showed me, you know that my students can do it too. And, the fact that Scratch allows you to share helps 
when having trouble getting your program to work. 

• I could use Scratch with calculus, trigonometry, geometry, and definitely with integrals and derivatives. 
• I would like to have a little more text based interface exposure to programming. If students are able to 

replicate what is shown or taught, then true learning will take place. 
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While we have not had a chance to study the 
impact of pre-service teacher preparation on 
student learning, the evidence from partnering 
school districts where the in-service teachers 
taught support what other researchers have 
reported about the effectiveness of CMST-
enhanced teaching. When used together, 
computational modeling and simulations affords 
the learner the opportunity to cycle iteratively 
back and forth between the deductive and 
inductive approaches to learning. [49-50,67-72] 
CMST has also shown to improve student learning 
in a constructive fashion [17] by first enabling 
deductive introduction of a topic from a general 
simplistic framework and then guiding the learner 
to inductively discover underlying STEM 
principles through experimentation. If used 
appropriately in the context of real world 
applications, CMST tools can involve students in 
inquiry-based, authentic science and engineering 
practices that are highlighted in the recent 
framework for K-12 science education. [42-43]  
For instance, the K-12 Framework suggests that 
performance expectations combine relevant 
science and engineering practices with core 
disciplinary ideas and crosscutting concepts that 
are appropriate for students at each grade level. It 
is the crossroads of performance expectations, 
relevant practices, core disciplinary ideas and 
crosscutting concepts that the deductive aspect of 
computational modeling could help with in order 
to adjust the level of exposure to scientific and 
engineering principles. Further, deeper 
understandings of science and engineering 
practices could emerge based on the grade level 
these tenets would be designed for. 

 
High levels of student engagement reported by 

our participating teachers strongly support the 
effectiveness of computational modeling as a 
deductive pedagogical tool. It shielded students 
from having to know detailed content knowledge 
of mathematics (e.g., differential equations), 
computing (e.g., algorithmic and programming) 
and science (e.g., physics) to conduct experiments 
of linear, harmonic, and planetary motion. Once 
immersed into an authentic experimentation 
through computer-based simulations, students can 
naturally engage in the eight practices of science 
and engineering as identified by the Appendix F of 
the K-12 Framework, including inductive analysis 

and interpretation of data which could lead to a 
constructive experience, conceptual change as 
well as modification to the initial design model. 
The inductive process resulting from 
experimentation through simulations helps 
learners to rediscover principles of computing and 
sciences, therefore leading to deeper content 
learning. Project-based experiences reported in the 
NSF’s MSPNET.org digital library by a group of 
9th and 10th grade high school students from 
BCSD High School (NY) offers a testimony of 
how students could gain a deeper understanding of 
STEM concepts. [79-80] Improved student 
achievement scores in both local and statewide 
exams at partnering school districts also point to a 
lasting impact of the dual nature of computational 
pedagogy on learning. Computational thinking 
(CT) is heavily emphasized by the K-12 
Framework and the NGSS standards as an element 
of recommended science and engineering 
practices. It is with the newly emerging NGSS 
themes and frameworks that highlight issues 
espoused in this paper that we believe that 
problem decomposition and abstract thinking 
aspects of CT skills [2,66] can be naturally 
fostered through the deductive and inductive 
reasoning cycle of computational pedagogy that 
has been articulated in Yaşar. [67] The top-down 
and bottom-up arrows in Figure 2 can help 
illustrate the parallels between distributive nature 
of deductive reasoning and decomposition as well 
as between associative nature of inductive 
reasoning and abstract thinking. 

 
While our initial focus on pedagogical aspects 

of CMST was to develop a tool-independent 
TPACK training for our teacher education 
program in order to maximize transfer of 
curriculum inventories to new conditions when 
newer technologies become available, we have 
actually stumbled upon much more. Information 
revolution has taken electronic computing devices 
to every corner of the globe but still very few 
would be familiar with and relate to computational 
modeling and simulation. In fact, even some 
researchers and educators might consider CMST 
as an ad hoc technology. Furthermore, computing 
is usually not considered as a branch of science 
[15] because it deals with artificial phenomena, 
not natural phenomena. However, as artificial and 
imitational as electronic computation has been 
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since 1936 by its inventor (Alan Turing [62]) we 
believe that it might eventually help us discover 
how the biological computation (i.e., the mind) 
generates complex mental states. [37] We actually 
think that it might even do more than that because 
a full understanding of how pervasive 
computational behavior is in the universe could 
change how we relate to ourselves and everything 
else in the universe. [68] That, indeed, would be a 
noble service to what other sciences try to 
accomplish. 

 
Effectiveness of computational modeling and 

simulation processes resonates well with how the 
mind itself works because it, too, uses a similar 
dual methodology (distributive and associative) in 
its information storage and processing. 
[9,34,37,53,67]. A scientist’s mind is a good 
example of how a mind learns best because it 
utilizes the scientific methodology. [6] 
Computational modeling and simulation process is 
nothing but the scientific methodology itself, 
except that it is put on turbo because computers 
speed up the modeling and testing process which 
was illustrated earlier in Figure 2. So, since the 
latest learning theories [7] as well as the new K-12 
Framework for next generation science standards 
[42-43] suggest that students learn better if they 
are engaged in activities closely resembling the 
way scientists think and work, then this suggests, 
at least theoretically, that computational pedagogy 
have the potential to foster a new way of teaching 
and learning, as documented here in this article. 
The remaining challenge is to scale this up [13] to 
a national level by creating programs, curriculum 
modules, tools, and databases to help prepare a 
greater number of teachers to implement the 
science and engineering practices recommended 
by the national standards. 
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