
COMPUTERS IN EDUCATION JOURNAL 61

A NEW ROBOTICS EDUCATIONAL SYSTEM FOR TEACHING
ADVANCED ENGINEERING CONCEPTS TO K-12 STUDENTS

Fernando Garcia Gonzalez, Janusz Zalewski

Software Engineering Program
Florida Gulf Coast University

Introduction

Recently there has been a rising popularity in the

use of robotics as a vehicle to expose K-12 students
to the STEM disciplines. A common practice is to
have the students build remote control robotic
vehicles for competitions such as the various First
USA Robotics Competitions[1]. However, the
robotics profession is not just focused on remote
controlled mobile robots but rather involves
stationary industrial arms running autonomously
doing repetitive tasks. Our approach is to go beyond
having the students simply build the robot and
control it using a remote control to teaching them
more advanced engineering concepts more closely
related to the profession. We still aim to introduce
STEM, and engineering in specific, to K-12 students
using robotics but we are doing it in a different way.

In this work we are taking a robotics kit designed

for K-12 students to build remote control mobile
robots, combining it with an educational robotics
software tool designed to support students in higher
education and creating a robotics educational system
designed to teach higher level engineering concepts
to K-12 students. This is an ambitious challenge
with promising results.

The system introduced in this paper allows the

students to design, model, simulate, build, and
program their robotic arm. Emphasis is placed on the
process of modeling and simulating their design in
order to assure correctness before physical
construction and physical control of the arm. The
system includes a Pitsco Tetrix Prime robotics kit
[2], designed for K-12 robotics activities, an Atmel
XMEGA-A3BU XPlained microcontroller board [3]
along with a custom circuit board, both designed to
provide electrical signals to the servo motors in the
kit given commands from the robotics software tool
and the software tool itself. The robotics software
tool [4] was developed by our research team for the
purpose of supporting undergraduate and graduate
introductory robotics courses.

a. The SRO Summer Camp

The system was used in the Summer Research

Opportunity [5] camp offered at Florida Gulf Coast
University’s Whittaker Center for STEM Education.
This summer camp was offered as a two- week camp
to middle school students who participated in the
Thomas Alva Edison Regional Science Fair. The
students were asked to design a robotic arm that
could hold a pencil and write their name on a sheet
of paper. The summer camp had 29 students
participate. Ten kits were used and the students
formed groups of 3 each using one kit. The software
tool was given to each student so they can work
independently in the camp or at home.

b. The Learning Objectives

This system is designed to teach students about

basic industrial robotic arms and how to program
them. However, we are introducing the concept of
modeling and simulation. Using this tool we are
teaching the students how to model their design,
create a virtual arm based on their model and
program the virtual arm. Once their programs are
fully tested and correct then they can run their
program on the physical arm which they will or
would have built. Specifically the students are to
learn the engineering concept of using a tool to
implement a virtual version of their arm to reduce
development effort. The mathematical modeling
uses the standard Denavit and Hartenberg (DH)
parameters [6,7].

The following are the learning outcomes for this

system. The students will learn to:

• design a robotic arm that can perform a
specific task,

• determine a set of D-H parameters to represent
their physical arm,

• model their arm virtually by properly entering
their D-H tables using the software tool,

• write a program to control the arm to
accomplish the specific task,

• simulate their software program using the

62 COMPUTERS IN EDUCATION JOURNAL

virtual arm,
• build the physical arm based on their design,

and
• control the physical arm running their

software program.

c. Similar Approaches

Perhaps the largest K-12 robotics programs are the

various FIRST competitions. In these competitions
the students build their mobile robot and control it
using the remote control. There is an autonomous
section to the competition however in the author’s
experience it is observed that the autonomous
section is very small and most teams do not
participate. More closely related to summer camps,
He et. al [8] offered a robotics summer camp which
had an autonomous component however their mobile
robots were controlled using a remote control unit
for a competition at the end of the camp. Tetrix
Prime for NI myRIO [9] is a similar system. It also
uses a combination of the Tetrix Prime kit with
National Instrument’s myRIO [10] to teach
advanced engineering concepts to students. The
students program the myRIO device using the
LabVIEW [11] programming language. The myRIO
device is linked to the servomotors of the robot to
control the robot. The robot can be an arm or a
mobile robot. The myRIO is a Field Programmable
Gate Array (FPGA) device which runs balancing
software provided by the system. The robotics
projects are based on this balancing technology. It
differs from ours in that the programming of the
FPGA and the balancing software are too complex
for the students to understand and so they simply
include premade packages the students include into
their robot. The student learns what engineering can
do in a cool project. Our approach is to teach
robotics programming software using a realistic
industrial robot programming language which is
simple and the students can write all the necessary
code to fully control their arm. Our approach also
introduces modeling and simulation.

The Educational Experience

The following is the experience this system is

designed to give the students. The students will be
given a task that is appropriate for the kit. Next the
students will receive a presentation of the kit and the
capabilities of the kit followed by some suggestions
they may follow to help them design the arm. In our
camp the task was to have the arm draw on a piece
of paper a message or a figure of the team’s choice.

It is feasible to design an arm using the kit to
accomplish this task. Other tasks may be used as
well. The students will then design an arm to
accomplish this task. Ideally they will think about
the design, draw their design on paper, measure the
D-H parameters, enter them into the tool thus
creating a virtual arm, and then finally move the arm
using the tools slider controls to see if their design is
capable of accomplishing the task. Experience from
our camp showed that the students went straight to
the kit and started building from the very beginning.

Given this tendency the desired experience was

modified as follows. After the presentation of the kit
and its capability and the presentation of the task, the
students will start building their arm using the kit,
See Figure 1 (a). In our camp, with team of 3
students, each student took about 3 days (12 hours)
to complete their initial arm. After this phase the
students are given a presentation on robotics
including robotics in the work place, industrial
robotics, research and mobile robotics, robot
applications, and studying robotics in undergraduate
and graduate school as a profession. Next the
process for determining the D-H parameters is
presented. This includes what they are, what they
measure, briefly how they are used in the field of
robotics and finally how they can measure these
parameters from their arm. Finally a presentation of
the robotic programming language is given.

Next the students will measure the D-H parameters

of their arm and enter them into the tool, see Figure
1 (b). They will verify that their virtual arm
resembles their actual arm in terms of the way it can
move. If the virtual arm does not move the way their
real one moves then they did not measure the D-H
parameters correctly. In the camp the students were
not able to grasp the process of measuring these
parameters and relied on the student helpers.
Software has since been added to the tool to support
this activity. Once the parameters are measured
correctly the students will enter them into the tool
and verify their correctness.

Next the students will program their virtual arm

using the robotics language and the software tool to
accomplish their task, see Figure 2 (a). Once they
are satisfied with the simulated results they make all
the connections between the arm and the PC,
establish the communications and tell the software
tool to control the actual arm by executing their
program. At this point the real arm they would have
built will move according to their program. The

COMPUTERS IN EDUCATION JOURNAL 63

(a)

(b)

Figure 1: (a) the students build the arm, (b) the
student measure the D-H parameter.

students can then make adjustments to their
programs to account for characteristics that are not
modeled such as the momentum in the movement,
velocity limits, overshooting the target and so on,
See Figure 2 (b).

The students in the camp took about 6 days (24
hours) for this task, however the tool had errors in it
preventing the physical and the virtual arms from
getting synchronized. This caused lots of frustration
with the students. We estimate this task should take
only about 3 days (12 hours) with the current
software tool that has been fixed.

Finally, at the end of the camp each team will
present their arm and give a demonstration of it
performing the task, see Figure 3 (a). The students’
parents and teachers will be invited to the
presentations, Figure 3 (b). This part was the
highlight of our camp as the students were very
eager to show off their hard work to their families
and their teachers.

(a)

(b)

Figure 2: (a) the students develop the program to
control the arm, (b) the students adjust their program
to account for the characteristics of the real arm.

(a)

(b)
Figure 3: (a) The students present their work, (b) the
parents and teachers are invited to attend the
presentations.

64 COMPUTERS IN EDUCATION JOURNAL

Programming the virtual arm first shows the
students how they can use modeling and simulation
to save time in creating a solution to an engineering
problem. Programming the virtual arm before the
actual arm saves time for several reasons. First each
student has a copy of the software tool running their
virtual arm so they each can program the arm
concurrently. We only had one arm kit per team.
Next, the dynamics of the virtual arm can be
adjusted in the model so as to remove those
constraints while the basic program is developed.
For example, they can increase the power of the
motors and move the arm at very fast speeds without
the negative effects such as overshoot, and
acceleration limits. They can adjust the
dynamics to represent the real arm after they
determined the basic programming steps are correct.
This allows them to concentrate on one issue at a
time. And finally the virtual arm does not model the
imperfections of the real arm which cause delay in
testing the programs. Eventually they will need to
take into consideration all the characteristics of the
real arm that are not included in the modeled.
However, having a program that works with the
virtual arm allows the students to concentrate only
on adjusting their program to account for these
realities knowing that the program is fundamentally
correct. This generally includes slowing the arm to
the point that the arm does not overshoot its
destination location.

This modeling and simulation exercise also shows

that a model is not perfectly accurate and can only
be used to develop parts of the solution independent
to these inaccuracies. The students need to
understand the difference between the virtual and the
actual arm and how they can adjust the model to
allow them to address development complexities
incrementally.

Details of the Student Activities

The following section describes the details of each

major activity the students were asked to perform.
These include building the arm with the kit,
measuring the D-H parameters, creating the virtual
arm, and programming the arm. The authors built a
demonstration arm using the kit shown in Figure 5 to
illustrate a complete example of these steps.

a. Building the Arm Using the Kit

The arm can be built using the kit. The students

quickly figure out how to snap the parts together to

form their designs. Since each kit included 3
servomotors they generally used 2 for the shoulder
and elbow and one for the wrist to lift the pen off the
paper. Figure 4 (a) and (b) shows two arms built by
the students in the camp.

(a)

(b)

Figure 4: Photographs of two robotic arms built by
the students participating in the summer camp.

Figure 5: The demonstration arm built by the
authors.

COMPUTERS IN EDUCATION JOURNAL 65

b. Measuring the D-H Parameters

The purpose of this section is not to help the reader

understand how to determine the D-H parameters for
an arm but rather to help the reader understand the
complexity of the process. We feel that while this
process is complex, middle school and older
students can master this material if given sufficient
time.

The four D-H parameters include the angle the link
has relative to the link its attached to, Θ , the joint
offset, d , the length of the link, a, and the joint
twist, α. All are constants describing the physical
characteristics of the link except for either Θ for
revolute joints or d for prismatic joints which are
variables representing the arm’s current position.
The kit can only support revolute joints so the joint
offset, d, will be a constant. To represent a robotic
arm’s kinematic characteristics, we attach an
imaginary reference frame to each link following the
parameter placement algorithm. The links are
ordered starting at the base of the arm and moving
outwards towards the hand. The D-H parameters for

each link are the distances its reference frame must
move to reach the reference frame of the next link in
the arm.

If the frames are placed following the D-H

algorithm shown in Figure 6 then with only 4
motions one can move from one frame to the next.
That is, suppose you will move a frame along its
own axis to coincide with the frame of the next link.
The 4 D-H parameters for that link describe these 4
motions.

The D-H parameters for the demonstration arm are

shown in Figure 8. Figure 9 (a) shows the virtual
demonstration arm and Figure 9 (b) shows the arm
with all the frames drawn.

Determining the D-H parameters is not difficult
once you understand the algorithm, however to “see”
the process one must be able to visualize the arm and
its reference frames in three dimensions. This 3D
visualization is difficult but is an essential skill for
any engineer.

Figure 6: Algorithm to assign reference frames to the links.

Figure 7: Algorithm to measure the D-H parameters.

For each link perform the following:

1. Assign a Z-axis to it and place it along the axis of rotation for that link. This is the joint
attached to the link that moves the rest of the arm, not itself.

2. Determine the location of the common normal between the Z-axis of the previous
link and its own Z-axis.

3. Place the origin of the frame at the intersection of this common normal and its Z-axis.
4. Point the X-axis along the common normal in the direction away from the previous

frame. If the common normal has a length of 0 then place the X-axis perpendicular
to its Z-axis and the Z-axis of the previous frame.

For each link perform the following:

1. Rotate the frame along its Z-axis until its X-axis aligns with the X-axis of the next frame. The
angle rotated is Θ .

2. Translate the frame along its Z-axis until it reaches the common normal between its Z- axis and the Z-
axis of the next frame. The distance traveled is d .

3. Translate along its X-axis (along the common normal) until it reaches the next Z-axis. At this time the
origins and both X-axis will coincide. The distance traveled is a .

4. Rotate the frame along its X-axis until its Z-axis aligns with the Z-axis of the next frame. The angle
rotated is α. .

66 COMPUTERS IN EDUCATION JOURNAL

 Θ d a α

0-1 0 85 60 0

1-2 0 -20 60 90

2-3 0 20 75 90

Figure 8: The D-H parameters for the demonstration arm. The thetas are variables and so we place zeros
for them.

 (a) (b)

Figure 9: (a) the virtual demonstration arm, (b) the arm with the frames attached.

c. Creating the virtual arm.

Once the D-H parameters are determined the

student can enter them into the tool using the setup
window as shown in Figure 10. The range of
movement for each joint must also be entered as
well as the maximum acceleration for each joint.
When the student presses the Create Robot button
the virtual arm appears in the left pane of the tool’s
window as shown in Figure 11.

d. Programming the Arm.

Programming the arm uses the tool’s Robot

Programming Window shown in Figure 12. The
programming language is unique, however it is
basically a simplified version of a typical industrial

robot programming language. The basic program
consists of a list of way points the hand must go
through to reach the destination point together with
their corresponding speeds along with other program
control instructions for looping and conditional
execution. Gonzalez et. al.[4] presents details on
programming using this tool. The arm moves from
point to point in traveling through a path. The code
to move the arm consists of series of MOVE
instructions that tell the arm to move from its current
location to a specified point with a specified speed.
To program the arm to perform a task the student
must first determine a complete path. Then using
either the virtual or real arm the student finds a set of
points along the path. Then with these points the
student writes the list of instructions to move the

Figure 10: The window used to enter the specifications including the D-H parameters of the arm.

COMPUTERS IN EDUCATION JOURNAL 67

Figure 11: The window after the arm is created. On the left is the virtual arm and on the right is the menu for
manual movements and other operations.

Figure 12: The programming window shown while executing a sample program. Instruction 4 is highlighted in
red indicating that instruction is being executed. Debugging information is listed below. Note a = 2 and b = 2.

arm from point to point. The looping instructions
can be used to perform segments of code more tha
once. To define a point, the student moves either
arm using the sliders to the point they are defining
then tells the software to record that point along with
a name that must also be provided. In Figure 12 the
program moves from its current location to P1 then
to P2 then back to P1 and P2 then to the home
position. The repetitive movement was achieved
with a simple loop using variables a and b. The
screen while executing is shown in Figure 13.

The virtual arm moves in real time as the program
executes. The program executes the next instruction
only after the arm reaches the destination point for
the current instruction. The speed parameter tells
how fast to travel. The red button tells the current

instruction that is executing. Once the program
executes on the virtual arm correctly, the student
establishes the communication link with the board
and simply tells the tool to control the physical arm
as well. The virtual and physical arm should move in
synchronized fashion.

The Complete System

The complete system shown in Figure 14 was

created by combining the two main components, the
educational robotics software tool with the Tetrix
Prime robotics kit and adding some interface
components. The system is designed to support
educational activities in the modeling, simulation
and control of robotic arms as described by the
educational experience presented above. The system

68 COMPUTERS IN EDUCATION JOURNAL

includes a Pitsco Tetrix Prime robotics kit, an Atmel
XMEGA-A3BU Xplained microcontroller board
along with a custom circuit board, both designed to
provide electrical signals to the servo motors in the
kit given commands from the robotics software tool
and the software tool itself. The software tool
provides the modeling and simulation of the arm. A

feature was added to the software tool to allow it to
control the physical arm. The interface between the
software tool and the kit is implemented with the
Atmel microcontroller board which communicates
with the software and provides electrical control
signals to the servo motors in the Tetrix kit.

Figure 13: The complete tool screen after executing instruction 3. The red button tells the current instruction
being executed. The arm moves in real time as the program executes.

Figure 14: The complete system including the
software tool running on the PC, the microcontroller
board, the dedicated board, the USB cable, and an
example arm built using the robotics kit.

a. The Software Tool

The robotics educational tool used in this work was

developed by the authors and is specifically
designed to teach the basic Introduction to Robotics
undergraduate course. This course generally covers
robotics fundamentals including history, robot types,
and degrees of freedom, robot kinematics including
the transformation matrix, forward and inverse
kinematics, and the D-H parameters, differential

motions, robot dynamics, trajectory planning,
actuators and sensors, and robot vision. The tool
displays a virtual robotic arm and a panel of controls
(see Figure 11). The virtual arm is entered into the
tool by specifying the arm’s D-H parameters and the
joint limits for each joint. With these numbers the
tool can accurately represent a virtual arm with the
precise kinematic motions of the physical arm it’s
modeling. The arm may not look like the real arm
since it is represented using stick figures, however it
has the same kinematic characteristics. Consider the
way we represent the motions of humans using stick
figures.

This tool supports teaching the following:

• The relationship between the standard

corresponding arm.
• The forward kinematics equations.
• How to use the inverse kinematic equations to

program the arm.
• How to program the arm at a high level by

defining points and using the move
instruction.

• How to design a trajectory

The tool is written in C++ using wxWidgets for its

graphical user interface (GUI) and OpenGL for its
3D graphics.

COMPUTERS IN EDUCATION JOURNAL 69

Once the arm is created, the student can perform a
variety of robotics activities of which one is to
control the movement of the arm by running a
program written in a robotic language. The student
writes and enters a program to control the movement
of the arm in order to perform some task. The tool
runs the program and moves the virtual arm which is
rendered in three dimensions.

The tool has an internal model of the joint motors

in the virtual arm. To move a joint, the software
must send a velocity command to each motor and
allow it to move over time. This was designed to
more accurately model a real arm. The joint model
determines the angular position of each joint and the
rendering routine then uses these angular positions
and the forward kinematic equations to render the
arm in its correct position. The kinematic equations
are derived from the D-H parameters.

The tool was modified to send a copy of each

velocity command to the controller board at the time
it sends it to the simulated joint motors. In this way
the physical arm can move in parallel to the virtual
one. This communication was performed using the
RS-232 protocol.

b. The Pitsco Tetrix Prime robotics kit

The Tetrix Prime robotics kit from Pitsco

Education, see Figure 15 (a), is designed for middle
school students to learn robotics and is used in
competitions such as the FIRST Tech Challenge
competition. This kit allows students to design and
build a robot out of the parts of the kit. This kit was
chosen because it has many parts designed to build a
robotic arm and even includes a gripper. The wheels
and 2 continuous rotating motors were not used in
the workshop as industrial robotic arms are generally
stationary. This kit includes 2 Hitec servomotors,
See Figure 15 (b) that are used to move the links of
the arm. An extra motor was purchased for each kit
to control all 3 links.

c. The Microcontroller Board

The Xplained microcontroller board shown in
Figure 16 (a) is an educational board offered by
Atmel to support learning how to use the Atmel
XMEGA-A3BU microcontroller and related
peripherals. A microcontroller is a small computer in
a single chip generally designed to control physical
equipment such as a microwave oven for example.
This board is only used to physically control the HI-
TEC servomotors included in the Tetrix kit. It

receives instructions from the PC via its RS-232
serial port and produces electrical signals to control
the servomotors. The use of an Arduino or
Raspberry Pi microcontroller board may be used and
perhaps would have resulted in an easier
implementation, however many of these Xplained
boards were already available and the authors were
experienced using it. The dedicated board shown in
Figure 16 (b) was made for this purpose and has the
simple task of connecting the ribbon cable connected
to the Xplained board to the individual connecters
for each motor

(a) (b)

Figure 15: (a) The Tetrix Prime robotics kit by
Pitsco Education, (b) The Hitec servo motor.

(a)

(b)

Figure 16: (a) The Xplained microcontroller board,
(b) The custom board.

70 COMPUTERS IN EDUCATION JOURNAL

The Atmel microcontroller board was created to
provide the electrical signals to each of the
servomotors in the kit. It communicates with the
software tool via an RS-232 port. The Atmel board
comes with a Universal Synchronous Asynchronous
Receiver Transmitter (USART) device that handles
RS-232 communications. The software on the PC
must communicate using the RS-232 protocol.
Fortunately Atmel provides a driver that turns a
USB port on the PC into an RS-232 port and the
Atmel board comes with a USB connector so a
standard USB cable connected between the PC and
the board is all that is needed, see Figure 17.

Figure 17: The USB connection between the PC and
the Atmel board.

Once the communication link between the PC and
the board is established, to move the arm, the PC
sends a velocity and duration pair for each motor.
So for each servo motor, the board receives an
angular velocity that it must travel at and a
destination angle that it must turn to. The board
needs to remember the angle each servo motor is at
in order to start from the correct position.

The board then must generate a Pulse Width
Modulation (PWM) electrical signal to each
servomotor. This signal tells the servo motor the
angle to move to. The software on the board uses a
periodic timer interrupt to create time slices or time
events that occur periodically. At each time event it
determines the angular increase each motor will be
driven to before the next time event. The velocity of
the individual motor along with the time event
frequency are used to determine the angle increment
the motor must move by before the next time event.
By controlling the angular increment at each time
event, the motor’s velocity is precisely controlled.

d. The dedicated circuit board

Since the microcontroller board has a 10 pin

double row header interface to its ports and the
servomotors each have a 3 pin single row header, an
interface board was created to connect the board to
each motor and the power from the battery pack, see
Figure 18 (a). Each motor has 3 wires, a positive and
negative power source and the PWM signal input.
The battery pack included with the kit provides the
positive and negative power lines and the
microcontroller provides the control signal. The
microcontroller’s port has 8 output lines of which 3
are used to deliver the 3 control signals to the
servomotors. Wire wrap technology was used for its
simplicity and development turnaround time
however printed circuit boards will be made for
future camps, Figure 18 (b).

(a)

 (b)

Figure 18: (a) The dedicated board with the ribbon
cables connected, (b) the wires that make the
connections.

e. The Servomotors

The kit includes two Hitec HS-233 servomotors

and we purchased an additional HS-485HB
servomotor per kit. Each motor has 3 wires, a

COMPUTERS IN EDUCATION JOURNAL 71

positive voltage of 5V, a ground and the control
signal. The power comes from a battery pack that’s
included in the kit. The control signal must be
generated by the microcontroller. Both servomotor
types are controlled by sending it a PWM signal
through the control line. This signal tells the motor
the angle to move to. The motor moves at full speed
to the specified angle. The microcontroller board
controls the speed by giving it incremental
destination angles over the course of a specified time
period. The control signal is a PWM wave with a 50
Hz frequency and a voltage between 3 to 5 volts. A
PWM signal is a square wave where the percent of
time the wave is high is called the duty cycle. Since
the frequency is 50 Hz, the period, or time between
waves, is 20 ms. The motor is capable of turning 180
degrees total (− 90° to 90°). The duty cycle of the
signal tells the motor the angle to move to. The −
90° corresponds to a duty cycle of 4.5%, the center,
0° is 7.5% and 90° corresponds to a 10.5% duty
cycle. Figure 19(a) shows an example of PWM
signal that tells the servomotor to move to an angle
of 35 degrees. Note in Figure 19(b) the duty cycle
must be 8.65% which corresponds to 1.73 ms high
and 18.27 ms low.

The Execution of the SRO Summer Camp

For over a decade, the Whitaker Center for STEM
Education has sponsored a 40 hour, two week event
for middle school students interested in STEM.
These students must have participated in the Thomas
Alva Edison Regional Science Fair. They must
prepare an application and are chosen to participate
in the Summer Research Opportunity at Florida Gulf
Coast University offering them a hands-on
experience of collaboration on a complete and
genuine research problem from hypothesis
generation and initial design, through field and
laboratory data collection, and culminating in data
analysis and interpretation. The program is staffed

by FGCU faculty and Graduate Student Assistants
and takes place during each summer.

In the summer of 2015, the students were asked to
design a robotic arm that can hold a pencil and write
their name on a sheet of paper. Since there were only
3 servo motors per kit and we needed all three to
control the joints, we did not allocate a motor to the
gripper but instead taped the jaw closed holding the
pen. The summer camp had 29 participants. The
camp was conducted by a team consisting of 3
middle school teachers, 4 undergraduate students, 2
students from the previous year’s camp, and the
instructor. Only 3 undergraduate students and the
instructor had knowledge of robotics. Ten kits were
used and the students formed groups of 3 each using
one kit. The software tool was given to each student
so they could work independently in the camp or at
home.

The software system had errors in it at the time that

prevented the physical arm from synchronizing with
the virtual arm. The delay in the serial
communications between the PC and the
microcontroller board was not considered so when
the virtual arm arrived at a point it immediately sent
a command to the physical arm to start moving
towards the next point. The arm would then abort the
remainder of the path and immediately start moving
towards the next point. As a result, the shapes drawn
looked deformed. Figure 20 shows a sample drawing
from one of the teams displaying the word “Hi.”

This error cause frustration which is reflected in

the surveys the students took at the end of the camp.
However, even the distorted drawing they were able
to produce resulted in the students displaying great
excitement. Other factors such as a weak grip on the
pen and physical play in the arm’s joints also
produced distortion however the students seamed to
understand these characteristics.

 1.73 ms 7.5% + 35°
10.5% − 4.5%

= 7.50% +1.167% = 8.67%
 90° − (−90°)

 (a) (b)

Figure 19: (a) the PWM signal used to move the servomotor's position to 35 degrees, (b) the calculation for
computing the required duty cycle for a 35 degree angle.

18.27 ms

72 COMPUTERS IN EDUCATION JOURNAL

Figure 20: a sample drawing from one of the arms

where the arm drew the word “Hi.”

The best way to find errors or weaknesses on a
software product is to give it to a set of users. Young
children are exceptionally good at finding error.
Most of the errors discovered during the camp were
fixed as soon as they were discovered. Every
morning each team would start by getting a new
copy of the software tool with all the errors
discovered the previous day fixed.

Assessment

Observations show that the students were more

comfortable designing their arm with the kit as
opposed to first designing it on paper. They were
eager to start building. It was hoped that the student
would first model their theoretical design and test its
effectiveness using a virtual arm based on their
model before building. We acknowledge that putting
a toy in front of a child and telling them not to use it
yet is impossible. We also acknowledge that it’s
much harder to measure the D-H parameters from a
paper design than when the physical arm is present.
However, they did prefer to program their virtual
arm first before running their program on the
physical arm. It was encouraging to see that they
appreciated the use of their virtual arm in developing
their programs. There were two reasons for this
preference. The first is that the virtual arm was more
reliable and did not require the setup time the real
arm took before executing the program and the
second reason is that all 3 members of the team
could program the arm concurrently since they each
had their own copy of the virtual arm and the
software tool. By using and appreciating the use of
the virtual arm they demonstrated the understanding
of the concept of modeling and simulation in the
development process.

It was also noted that the students were very

motivated to work on their arm. Typically, not
wanting to stop for lunch and wanting to stay at the
end of the day. We believe the students were
motivated by the challenge of having to develop a

program to control their arm as opposed to just
building it and controlling it manually with a remote
control unit.

Although the students did seem to understand what

the D-H parameters are, they were not able to learn
how to measure these parameters and needed help
from the undergraduate students. Learning how to
measure these parameters is considered difficult for
undergraduate and even graduate students.

At the end of the camp all teams had a working

arm that could write. All teams were able to design a
functioning arm that could perform the task and
develop a program to move the arm.

The only assessment tool that was used was a

survey the students filled at the end of the camp. It
was designed to assess the camp itself and the
effectiveness of the staff and not for assessing the
robotic system. Twenty-two participants completed
the survey. Eighteen of them indicated their favorite
part of the camp was building the robot. Sixteen
students indicated that their least favorite part was
programming the arm, one student indicated it was
finding the D-H parameters, and 2 indicated their
least favorite part was starting over with a new
design once their old design was proved ineffective.
We believe the frustration with the programming
was a result of the errors in the software tool. This
frustration was observed during the camp. Six
students indicated the lectures teaching them how to
find the D-H parameters and how to program were a
bit over their heads. And finally all the students who
filled the survey indicated that they had fun.

Future Work

To help the students understand how to measure

the D-H parameters, we plan on adding a feature that
will guild the student through the process. Like a
wizard that will display different options and the
student can select the appropriate one. Error
checking will be increased to prevent the program
from entering invalid states.

It is envisioned that this tool will be made

available to all who have an interest, however the
software is not polished or fully tested at this time.
The method for offering the software is also not
decided at this time.

Conclusions

We presented a new robotics based educational

system for K-12 students. Our goal was to go

COMPUTERS IN EDUCATION JOURNAL 73

beyond the traditional activity of building a mobile
robot and control it using a remote control to an
activity more closely related to the robotics
profession including introducing the concept of
modeling and simulation. We gave a summer camp
to middle school students that showed they had
some difficulty learning how to measure the D-H
parameters of their arm but were able to use the
virtual arm to develop their program before running
it on the actual arm. The survey showed they had fun
and observations showed that they did learn the
modeling and simulation concept and were able to
use it to speed the development of their project.

References

1. FIRST Robotics, Link: http://www.
firstinspires.org/

2. Tetrix Robotics, Link: http://www.

tetrixrobotics.com/

3. Atmel ATxmega256A3BU microcontroller

based XPlained board, Link: http://
www.atmel.com/tools/XMEGA-
A3BUXPLAINED.aspx

4. F. Gonzalez, J. Zalewski, G. Pinzon, “An

Educational Tool to Support Introductory
Robotics Courses,”Proceedings of the.
122nd ASEE Annual Conference, Seattle
WA. June 14-17, 2015. Paper No. 13128.

5. Florida Gulf Coast University’s Whittaker

Center for STEM Education, Link:
http://www.fgcu.edu/WhitakerCenter/sro.ht
ml

6. Denavit, J., R. S. Hartenberg, “A Kinematic

Notation for Lower-Pair Mechanisms Based
on Matrices,” ASME Journal of Applied
Mechanics, June 1955, 215-221.

7. Saeed B. Niku, “Introduction to Robotics,

Analysis, Control, Applications,” 2nd Ed.
Wiley, 2011.

8. He Shouling, Jefferson Maldonado, Alex

Uquillas, Terry Cetoute, “ Teaching K-12
Students Robotics Programming in
Collaboration with the Robotics Club,”
Proceedings of the 4th IEEE Integrated
STEM Education Conference, 2014.

9. Tetrix Prime for NI myRIO, Link:
http://www.ni.com/white-paper/52707/en/

10. National Instrument’s myRIO, Link:

http://www.ni.com/myrio/

11. LabVIEW: http://www.ni.com/labview/

Acknowledgement

The authors are grateful for the generous support

provided by the Daitch Family Foundation who
funded the summer research opportunity and this
publication through the Whitaker Center

Biographical Information

Dr. Fernando Gonzalez joined FGCU as an

Assistant Professor in the Software Engineering
Program in the fall of 2013. Previously he has
worked at Texas A&M International University in
Laredo, Texas, the U.S. Department of Energy at
Los Alamos National Laboratory in Los Alamos,
New Mexico and at the University of Central
Florida in Orlando, Florida. He graduated from the
University of Illinois in 1997 with a Ph.D. in
Electrical Engineering. He received his Master’s
degree in Electrical Engineering and his Bachelor’s
degree in Computer Science from Florida
International University in 1992 and 1989. His
research interests include the intelligent control of
large scale autonomous systems, autonomous
vehicles, discrete-event modeling and simulation and
human signature verification.

Janusz Zalewski, Ph.D., is a professor of computer

science and software engineering at Florida Gulf
Coast University. Prior to an academic appointment,
he worked for various nuclear research institutions,
including the Data Acquisition Group of
Superconducting Super Collider and Computer
Safety and Reliability Center at Lawrence Livermore
National Laboratory. He also worked on projects and
consulted for a number of private companies,
including Lockheed Martin, Harris, and Boeing.
Zalewski served as a chairman of the International
Federation for Information Processing Working
Group 5.4 on Industrial Software Quality, and of an
International Federation of Automatic Control
Technical Committee on Safety of Computer Control
Systems. His major research interests include safety
related, real-time embedded and cyberphysical
computer systems, and computing education.

http://www.fgcu.edu/WhitakerCenter/sro.html
http://www.fgcu.edu/WhitakerCenter/sro.html
http://www.ni.com/white-paper/52707/en/
http://www.ni.com/myrio/
http://www.ni.com/labview/

