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Introduction 

 
Recently there has been a rising popularity in the 

use of robotics as a vehicle to expose K-12 students 
to the STEM disciplines. A common practice is to 
have the students build remote control robotic 
vehicles for competitions such as the various First 
USA Robotics Competitions[1]. However, the 
robotics profession is not just focused on remote 
controlled mobile robots but rather involves 
stationary industrial arms running autonomously 
doing repetitive tasks. Our approach is to go beyond 
having the students simply build the robot and 
control it using a remote control to teaching them 
more advanced engineering concepts more closely 
related to the profession. We still aim to introduce 
STEM, and engineering in specific, to K-12 students 
using robotics but we are doing it in a different way. 

 
In this work we are taking a robotics kit designed 

for K-12 students to build remote control mobile 
robots, combining it with an educational robotics 
software tool designed to support students in higher 
education and creating a robotics educational system 
designed to teach higher level engineering concepts 
to K-12 students. This is an ambitious challenge 
with promising results. 

 
The system introduced in this paper allows the 

students to design, model, simulate, build, and 
program their robotic arm. Emphasis is placed on the 
process of modeling and simulating their design in 
order to assure correctness before physical 
construction and physical control of the arm. The 
system includes a Pitsco Tetrix Prime robotics kit 
[2], designed for K-12 robotics activities, an Atmel 
XMEGA-A3BU XPlained microcontroller board [3] 
along with a custom circuit board, both designed to 
provide electrical signals to the servo motors in the 
kit given commands from the robotics software tool 
and the software tool itself. The robotics software 
tool [4] was developed by our research team for the 
purpose of supporting undergraduate and graduate 
introductory robotics courses. 

 
 

a. The SRO Summer Camp 
 
The system was used in the Summer Research 

Opportunity [5] camp offered at Florida Gulf Coast 
University’s Whittaker Center for STEM Education. 
This summer camp was offered as a two- week camp 
to middle school students who participated in the 
Thomas Alva Edison Regional Science Fair. The 
students were asked to design a robotic arm that 
could hold a pencil and write their name on a sheet 
of paper. The summer camp had 29 students 
participate. Ten kits were used and the students 
formed groups of 3 each using one kit. The software 
tool was given to each student so they can work 
independently in the camp or at home. 

 
b. The Learning Objectives 

 
This system is designed to teach students about 

basic industrial robotic arms and how to program 
them. However, we are introducing the concept of 
modeling and simulation. Using this tool we are 
teaching the students how to model their design, 
create a virtual arm based on their model and 
program the virtual arm. Once their programs are 
fully tested and correct then they can run their 
program on the physical arm which they will or 
would have built. Specifically the students are to 
learn the engineering concept of using a tool to 
implement a virtual version of their arm to reduce 
development effort. The mathematical modeling 
uses the standard Denavit and Hartenberg (DH) 
parameters [6,7]. 

 
The following are the learning outcomes for this 

system. The students will learn to: 
 

• design a robotic arm that can perform a 
specific task, 

• determine a set of D-H parameters to represent 
their physical arm, 

• model their arm virtually by properly entering 
their D-H tables using the software tool, 

• write a program to control the arm to 
accomplish the specific task, 

• simulate their software program using the 
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virtual arm, 
• build the physical arm based on their design, 

and 
• control the physical arm running their 

software program. 
 

c. Similar Approaches 
 
Perhaps the largest K-12 robotics programs are the 

various FIRST competitions. In these competitions 
the students build their mobile robot and control it 
using the remote control. There is an autonomous 
section to the competition however in the author’s 
experience it is observed that the autonomous 
section is very small and most teams do not 
participate.  More closely related to summer camps, 
He et. al [8] offered a robotics summer camp which 
had an autonomous component however their mobile 
robots were controlled using a remote control unit 
for a competition at the end of the camp. Tetrix 
Prime for NI myRIO [9]  is a similar system. It also 
uses a combination of the Tetrix Prime kit with 
National Instrument’s myRIO [10] to teach 
advanced engineering concepts to students. The 
students program the myRIO device using the 
LabVIEW [11] programming language. The myRIO 
device is linked to the servomotors of the robot to 
control the robot. The robot can be an arm or a 
mobile robot. The myRIO is a Field Programmable 
Gate Array (FPGA) device which runs balancing 
software provided by the system. The robotics 
projects are based on this balancing technology. It 
differs from ours in that the programming of the 
FPGA and the balancing software are too complex 
for the students to understand and so they simply 
include premade packages the students include into 
their robot. The student learns what engineering can 
do in a cool project. Our approach is to teach 
robotics programming software using a realistic 
industrial robot programming language which is 
simple and the students can write all the necessary 
code to fully control their arm. Our approach also 
introduces modeling and simulation. 

 
The  Educational  Experience 

 
The following is the experience this system is 

designed to give the students. The students will be 
given a task that is appropriate for the kit. Next the 
students will receive a presentation of the kit and the 
capabilities of the kit followed by some suggestions 
they may follow to help them design the arm. In our 
camp the task was to have the arm draw on a piece 
of paper a message or a figure of the team’s choice. 

It is feasible to design an arm using the kit to 
accomplish this task. Other tasks may be used as 
well. The students will then design an arm to 
accomplish this task. Ideally they will think about 
the design, draw their design on paper, measure the 
D-H parameters, enter them into the tool thus 
creating a virtual arm, and then finally move the arm 
using the tools slider controls to see if their design is 
capable of accomplishing the task. Experience from 
our camp showed that the students went straight to 
the kit and started building from the very beginning. 

 
Given this tendency the desired experience was 

modified as follows. After the presentation of the kit 
and its capability and the presentation of the task, the 
students will start building their arm using the kit, 
See Figure 1 (a). In our camp, with team of 3 
students, each student took about 3 days (12 hours) 
to complete their initial arm. After this phase the 
students are given a presentation on robotics 
including robotics in the work place, industrial 
robotics, research and mobile robotics, robot 
applications, and studying robotics in undergraduate 
and graduate school as a profession. Next the 
process for determining the D-H parameters is 
presented. This includes what they are, what they 
measure, briefly how they are used in the field of 
robotics and finally how they can measure these 
parameters from their arm. Finally a presentation of 
the robotic programming language is given. 

 
Next the students will measure the D-H parameters 

of their arm and enter them into the tool, see Figure 
1 (b). They will verify that their virtual arm 
resembles their actual arm in terms of the way it can 
move. If the virtual arm does not move the way their 
real one moves then they did not measure the D-H 
parameters correctly. In the camp the students were 
not able to grasp the process of measuring these 
parameters and relied on the student helpers. 
Software has since been added to the tool to support 
this activity. Once the parameters are measured 
correctly the students will enter them into the tool 
and verify their correctness. 

 
Next the students will program their virtual arm 

using the robotics language and the software tool to 
accomplish their task, see Figure 2 (a). Once they 
are satisfied with the simulated results they make all 
the connections between the arm and the PC, 
establish the communications and tell the software 
tool to control the  actual arm  by executing  their  
program. At this point the real arm they would have 
built  will  move  according  to  their  program.   The  
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(a) 

(b) 
 

Figure 1: (a) the students build the arm, (b) the 
student measure the D-H parameter. 
 
students can then make adjustments to their 
programs to account for characteristics that are not 
modeled such as the momentum in the movement, 
velocity limits, overshooting the target and so on, 
See Figure 2 (b). 
 

The students in the camp took about 6 days (24 
hours) for this task, however the tool had errors in it 
preventing the physical and the virtual arms from 
getting synchronized. This caused lots of frustration 
with the students. We estimate this task should take 
only about 3 days (12 hours) with the current 
software tool that has been fixed. 
 
Finally, at the end of the camp each team will 
present their arm and give a demonstration of it 
performing the task, see Figure 3 (a). The students’ 
parents and teachers will be invited to the 
presentations, Figure 3 (b). This part was the 
highlight of our camp as the students were very 
eager to show off their hard work to their families 
and their teachers. 

 
 
 

(a) 

(b) 
 

Figure 2: (a) the students develop the program to 
control the arm, (b) the students adjust their program 
to account for the characteristics of the real arm. 
 

(a) 

(b) 
Figure 3: (a) The students present their work, (b) the 
parents and teachers are invited to attend the 
presentations. 
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Programming the virtual arm first shows the 
students how they can use modeling and simulation 
to save time in creating a solution to an engineering 
problem. Programming the virtual arm before the 
actual arm saves time for several reasons. First each 
student has a copy of the software tool running their 
virtual arm so they each can program the arm 
concurrently. We only had one arm kit per team. 
Next, the dynamics of the virtual arm can be 
adjusted in the model so as to remove those 
constraints while the basic program is developed. 
For example, they can increase the power of the 
motors and move the arm at very fast speeds without  
the negative effects such as overshoot, and  
acceleration  limits.    They  can  adjust  the 
dynamics to represent the real arm after they 
determined the basic programming steps are correct. 
This allows them to concentrate on one issue at a 
time. And finally the virtual arm does not model the 
imperfections of the real arm which cause delay in 
testing the programs. Eventually they will need to 
take into consideration all the characteristics of the 
real arm that are not included in the modeled. 
However, having a program that works with the 
virtual arm allows the students to concentrate only 
on adjusting their program to account for these 
realities knowing that the program is fundamentally 
correct. This generally includes slowing the arm to 
the point that the arm does not overshoot its 
destination location. 

 
This modeling and simulation exercise also shows 

that a model is not perfectly accurate and can only 
be used to develop parts of the solution independent 
to these inaccuracies. The students need to 
understand the difference between the virtual and the 
actual arm and how they can adjust the model to 
allow them to address development complexities 
incrementally. 
 

Details  of  the  Student  Activities 
 
The following section describes the details of each 

major activity the students were asked to perform. 
These include building the arm with the kit, 
measuring the D-H parameters, creating the virtual 
arm, and programming the arm. The authors built a 
demonstration arm using the kit shown in Figure 5 to 
illustrate a complete example of these steps. 
 
a. Building the Arm Using the Kit 

 
The arm can be built using the kit. The students 

quickly figure out how to snap the parts together to 

form their designs. Since each kit included 3 
servomotors they generally used 2 for the shoulder 
and elbow and one for the wrist to lift the pen off the 
paper. Figure 4 (a) and (b) shows two arms built by 
the students in the camp. 

(a) 

(b) 
 

Figure 4: Photographs of two robotic arms built by 
the students participating in the summer camp. 
 

 
 
Figure 5: The demonstration arm built by the 
authors. 
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b. Measuring the D-H Parameters 
 
The purpose of this section is not to help the reader 

understand how to determine the D-H parameters for 
an arm but rather to help the reader understand the 
complexity of the process. We feel that while this 
process is complex, middle school and older 
students can master this material if given sufficient 
time. 
 

The four D-H parameters include the angle the link 
has relative to the link its attached to, Θ , the joint 
offset, d ,  the length of the link,  a,  and the joint 
twist, α.  All are constants describing the physical 
characteristics of the link except for either Θ for 
revolute joints or d for prismatic joints which are 
variables representing the arm’s current position. 
The kit can only support revolute joints so the joint 
offset, d, will be a constant. To represent a robotic 
arm’s kinematic characteristics, we attach an 
imaginary reference frame to each link following the 
parameter placement algorithm. The links are 
ordered starting at the base of the arm and moving 
outwards towards the hand. The D-H parameters for 

each link are the distances its reference frame must 
move to reach the reference frame of the next link in 
the arm. 

 
If the frames are placed following the D-H 

algorithm shown in Figure 6 then with only 4 
motions one can move from one frame to the next. 
That is, suppose you will move a frame along its 
own axis to coincide with the frame of the next link. 
The 4 D-H parameters for that link describe these 4 
motions. 

 
The D-H parameters for the demonstration arm are 

shown in Figure 8. Figure 9 (a) shows the virtual 
demonstration arm and Figure 9 (b) shows the arm 
with all the frames drawn. 
 

Determining the D-H parameters is not difficult 
once you understand the algorithm, however to “see” 
the process one must be able to visualize the arm and 
its reference frames in three dimensions. This 3D 
visualization is difficult but is an essential skill for 
any engineer. 

 

 
 

Figure 6: Algorithm to assign reference frames to the links. 
 

 

 
Figure 7: Algorithm to measure the D-H parameters. 

For each link perform the following: 

1. Assign a Z-axis to it and place it along the axis of rotation for that link. This is the joint 
attached to the link that moves the rest of the arm, not itself. 

2. Determine the location of the common normal between the Z-axis of the previous 
link and its own Z-axis. 

3. Place the origin of the frame at the intersection of this common normal and its Z-axis. 
4. Point the X-axis along the common normal in the direction away from the previous 

frame. If the common normal has a length of 0 then place the X-axis perpendicular 
to its Z-axis and the Z-axis of the previous frame. 

For each link perform the following: 

1. Rotate the frame along its Z-axis until its X-axis aligns with the X-axis of the next frame. The 
angle rotated is Θ . 

2. Translate the frame along its Z-axis until it reaches the common normal between its Z- axis and the Z-
axis of the next frame. The distance traveled is  d . 

3. Translate along its X-axis (along the common normal) until it reaches the next Z-axis. At this time the 
origins and both X-axis will coincide. The distance traveled is  a . 

4. Rotate the frame along its X-axis until its Z-axis aligns with the Z-axis of the next frame. The angle 
rotated is α. . 
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 Θ d a α 

0-1 0 85 60 0 

1-2 0 -20 60 90 

2-3 0 20 75 90 

Figure 8: The D-H parameters for the demonstration arm. The thetas are variables and so we place zeros 
for them. 

 

                                (a)                          (b) 
 

Figure 9: (a) the virtual demonstration arm, (b) the arm with the frames attached. 
 
c. Creating the virtual arm. 

 
Once the D-H parameters are determined the 

student can enter them into the tool using the setup 
window as shown in Figure 10. The range of 
movement for each joint must also be entered as 
well as the maximum acceleration for each joint. 
When the student presses the Create Robot button 
the virtual arm appears in the left pane of the tool’s 
window as shown in Figure 11. 
 
d. Programming the Arm. 

 
Programming the arm uses the tool’s Robot 

Programming Window shown in Figure 12. The 
programming language is unique, however it is 
basically a simplified version of a typical industrial 

robot programming language. The basic program 
consists of a list of way points the hand must go 
through to reach the destination point together with 
their corresponding speeds along with other program 
control instructions for looping and conditional 
execution. Gonzalez et. al.[4]  presents details on 
programming using this tool. The arm moves from 
point to point in traveling through a path. The code 
to move the arm consists of series of MOVE 
instructions that tell the arm to move from its current 
location to a specified point with a specified speed. 
To program the arm to perform a task the student 
must first determine a complete path. Then using 
either the virtual or real arm the student finds a set of 
points along the path. Then with these points the 
student writes the list of instructions to move the

 
Figure 10: The window used to enter the specifications including the D-H parameters of the arm. 
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Figure 11: The window after the arm is created. On the left is the virtual arm and on the right is the menu for 
manual movements and other operations. 
 

 
Figure 12: The programming window shown while executing a sample program. Instruction 4 is highlighted in 
red indicating that instruction is being executed. Debugging information is listed below. Note a = 2 and b = 2. 
 
arm from point to point. The looping instructions 
can be used to perform segments of code more tha 
once. To define a point, the student moves either 
arm using the sliders to the point they are defining 
then tells the software to record that point along with 
a name that must also be provided. In Figure 12 the 
program moves from its current location to P1 then 
to P2 then back to P1 and P2 then to the home 
position. The repetitive movement was achieved 
with a simple loop using variables a and b. The 
screen while executing is shown in Figure 13. 
 

The virtual arm moves in real time as the program 
executes. The program executes the next instruction 
only after the arm reaches the destination point for 
the current instruction. The speed parameter tells 
how fast to travel. The red button tells the current 

instruction that is executing. Once the program 
executes on the virtual arm correctly, the student 
establishes the communication link with the board 
and simply tells the tool to control the physical arm 
as well. The virtual and physical arm should move in 
synchronized fashion. 
 

The  Complete  System 
 
The complete system shown in Figure 14 was 

created by combining the two main components, the 
educational robotics software tool with the Tetrix 
Prime robotics kit and adding some interface 
components. The system is designed to support 
educational activities in the modeling, simulation 
and control of robotic arms as described by the 
educational experience presented above. The system 



68  COMPUTERS IN EDUCATION JOURNAL 

includes a Pitsco Tetrix Prime robotics kit, an Atmel 
XMEGA-A3BU Xplained microcontroller board 
along with a custom circuit board, both designed to 
provide electrical signals to the servo motors in the 
kit given commands from the robotics software tool 
and the software tool itself. The software tool 
provides the modeling and simulation of the arm. A 

feature was added to the software tool to allow it to 
control the physical arm. The interface between the 
software tool and the kit is implemented with the 
Atmel microcontroller board which communicates 
with the software and provides electrical control 
signals to the servo motors in the Tetrix kit. 
 

 

 
Figure 13: The complete tool screen after executing instruction 3. The red button tells the current instruction 
being executed. The arm moves in real time as the program executes. 
 

 
Figure 14: The complete system including the 
software tool running on the PC, the microcontroller 
board, the dedicated board, the USB cable, and an 
example arm built using the robotics kit. 
 
a. The Software Tool 

 
The robotics educational tool used in this work was 

developed by the authors and is specifically 
designed to teach the basic Introduction to Robotics 
undergraduate course. This course generally covers 
robotics fundamentals including history, robot types, 
and degrees of freedom, robot kinematics including 
the transformation matrix, forward and inverse 
kinematics, and the D-H parameters, differential 

motions, robot dynamics, trajectory planning, 
actuators and sensors, and robot vision. The tool 
displays a virtual robotic arm and a panel of controls 
(see Figure 11). The virtual arm is entered into the 
tool by specifying the arm’s D-H parameters and the 
joint limits for each joint. With these numbers the 
tool can accurately represent a virtual arm with the 
precise kinematic motions of the physical arm it’s 
modeling. The arm may not look like the real arm 
since it is represented using stick figures, however it 
has the same kinematic characteristics. Consider the 
way we represent the motions of humans using stick 
figures. 

 
This tool supports teaching the following: 
 
• The relationship between the standard  

corresponding arm. 
• The forward kinematics equations. 
• How to use the inverse kinematic equations to 

program the arm. 
• How to program the arm at a high level by 

defining points and using the move 
instruction. 

• How to design a trajectory 
 
The tool is written in C++ using wxWidgets for its 

graphical user interface (GUI) and OpenGL for its 
3D graphics. 
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Once the arm is created, the student can perform a 
variety of robotics activities of which one is to 
control the movement of the arm by running a 
program written in a robotic language. The student 
writes and enters a program to control the movement 
of the arm in order to perform some task. The tool 
runs the program and moves the virtual arm which is 
rendered in three dimensions. 

 
The tool has an internal model of the joint motors 

in the virtual arm. To move a joint, the software 
must send a velocity command to each motor and 
allow it to move over time. This was designed to 
more accurately model a real arm. The joint model 
determines the angular position of each joint and the 
rendering routine then uses these angular positions 
and the forward kinematic equations to render the 
arm in its correct position. The kinematic equations 
are derived from the D-H parameters. 

 
The tool was modified to send a copy of each 

velocity command to the controller board at the time 
it sends it to the simulated joint motors. In this way 
the physical arm can move in parallel to the virtual 
one. This communication was performed using the 
RS-232 protocol. 

 
b. The Pitsco Tetrix Prime robotics kit 

 
The Tetrix Prime robotics kit from Pitsco 

Education, see Figure 15 (a), is designed for middle 
school students to learn robotics and is used in 
competitions such as the FIRST Tech Challenge 
competition. This kit allows students to design and 
build a robot out of the parts of the kit. This kit was 
chosen because it has many parts designed to build a 
robotic arm and even includes a gripper. The wheels 
and 2 continuous rotating motors were not used in 
the workshop as industrial robotic arms are generally 
stationary. This kit includes 2 Hitec servomotors, 
See Figure 15 (b) that are used to move the links of 
the arm. An extra motor was purchased for each kit 
to control all 3 links. 

 
c. The Microcontroller Board 
 

The Xplained microcontroller board shown in 
Figure 16 (a) is an educational board offered by 
Atmel to support learning how to use the Atmel 
XMEGA-A3BU microcontroller and related 
peripherals. A microcontroller is a small computer in 
a single chip generally designed to control physical 
equipment such as a microwave oven for example. 
This board is only used to physically control the HI-
TEC servomotors included in the Tetrix kit. It 

receives instructions from the PC via its RS-232 
serial port and produces electrical signals to control 
the servomotors. The use of an Arduino or 
Raspberry Pi microcontroller board may be used and 
perhaps would have resulted in an easier 
implementation, however many of these Xplained 
boards were already available and the authors were 
experienced using it. The dedicated board shown in 
Figure 16 (b) was made for this purpose and has the 
simple task of connecting the ribbon cable connected 
to the Xplained board to the individual connecters 
for each motor 

 
(a)                                          (b) 

 
Figure 15: (a) The Tetrix Prime robotics kit by 
Pitsco Education, (b) The Hitec servo motor. 
 

 
(a) 

 
(b) 

Figure 16: (a) The Xplained microcontroller board, 
(b) The custom board. 
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The Atmel microcontroller board was created to 
provide the electrical signals to each of the 
servomotors in the kit. It communicates with the 
software tool via an RS-232 port. The Atmel board 
comes with a Universal Synchronous Asynchronous 
Receiver Transmitter (USART) device that handles 
RS-232 communications. The software on the PC 
must communicate using the RS-232 protocol. 
Fortunately Atmel provides a driver that turns a 
USB port on the PC into an RS-232 port and the 
Atmel board comes with a USB connector so a 
standard USB cable connected between the PC and 
the board is all that is needed, see Figure 17. 

 
Figure 17: The USB connection between the PC and 
the Atmel board. 
 

Once the communication link between the PC and 
the board is established, to move the arm, the  PC 
sends  a  velocity  and  duration  pair for each motor. 
So for each servo motor, the board receives an 
angular velocity that it must travel at and a 
destination angle that it must turn to. The board 
needs to remember the angle each servo motor is at 
in order to start from the correct position. 
 

The board then must generate a Pulse Width 
Modulation (PWM) electrical signal to each 
servomotor. This signal tells the servo motor the 
angle to move to. The software on the board uses a 
periodic timer interrupt to create time slices or time 
events that occur periodically. At each time event it 
determines the angular increase each motor will be 
driven to before the next time event. The velocity of 
the individual motor along with the time event 
frequency are used to determine the angle increment 
the motor must move by before the next time event. 
By controlling the angular increment at each time 
event, the motor’s velocity is precisely controlled. 

 

d. The dedicated circuit board 
 
Since the microcontroller board has a 10 pin 

double row header interface to its ports and the 
servomotors each have a 3 pin single row header, an 
interface board was created to connect the board to 
each motor and the power from the battery pack, see 
Figure 18 (a). Each motor has 3 wires, a positive and 
negative power source and the PWM signal input. 
The battery pack included with the kit provides the 
positive and negative power lines and the 
microcontroller provides the control signal. The 
microcontroller’s port has 8 output lines of which 3 
are used to deliver the 3 control signals to the 
servomotors. Wire wrap technology was used for its 
simplicity and development turnaround time 
however printed circuit boards will be made for 
future camps, Figure 18 (b). 

(a) 

 (b) 
 

Figure 18: (a) The dedicated board with the ribbon 
cables connected, (b) the wires that make the 
connections. 
 
e. The Servomotors 

 
The kit includes two Hitec HS-233 servomotors 

and we purchased an additional HS-485HB 
servomotor per kit. Each motor has 3 wires, a 
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positive voltage of 5V, a ground and the control 
signal. The power comes from a battery pack that’s 
included in the kit. The control signal must be 
generated by the microcontroller. Both servomotor 
types are controlled by sending it a PWM signal 
through the control line. This signal tells the motor 
the angle to move to. The motor moves at full speed 
to the specified angle. The microcontroller board 
controls the speed by giving it incremental 
destination angles over the course of a specified time 
period. The control signal is a PWM wave with a 50 
Hz frequency and a voltage between 3 to 5 volts. A 
PWM signal is a square wave where the percent of 
time the wave is high is called the duty cycle. Since 
the frequency is 50 Hz, the period, or time between 
waves, is 20 ms. The motor is capable of turning 180 
degrees total (− 90° to 90°). The duty cycle of the 
signal tells the motor the angle to move to. The − 
90° corresponds to a duty cycle of 4.5%, the center, 
0° is 7.5% and 90° corresponds to a 10.5% duty 
cycle. Figure 19(a) shows an example of PWM 
signal that tells the servomotor to move to an angle 
of 35 degrees. Note in Figure 19(b) the duty cycle 
must be 8.65% which corresponds to 1.73 ms high 
and 18.27 ms low. 
 

The  Execution  of  the  SRO  Summer  Camp 
 

For over a decade, the Whitaker Center for STEM 
Education has sponsored a 40 hour, two week event 
for middle school students interested in STEM. 
These students must have participated in the Thomas 
Alva Edison Regional Science Fair. They must 
prepare an application and are chosen to participate 
in the Summer Research Opportunity at Florida Gulf 
Coast University offering them a hands-on 
experience of collaboration on a complete and 
genuine research problem from hypothesis 
generation and initial design, through field and 
laboratory data collection, and culminating in data 
analysis and interpretation. The program is staffed 

by FGCU faculty and Graduate Student Assistants 
and takes place during each summer. 

In the summer of 2015, the students were asked to 
design a robotic arm that can hold a pencil and write 
their name on a sheet of paper. Since there were only 
3 servo motors per kit and we needed all three to 
control the joints, we did not allocate a motor to the 
gripper but instead taped the jaw closed holding the 
pen. The summer camp had 29 participants. The 
camp was conducted by a team consisting of 3 
middle school teachers, 4 undergraduate students, 2 
students from the previous year’s camp, and the 
instructor. Only 3 undergraduate students and the 
instructor had knowledge of robotics. Ten kits were 
used and the students formed groups of 3 each using 
one kit. The software tool was given to each student 
so they could work independently in the camp or at 
home. 

 
The software system had errors in it at the time that 

prevented the physical arm from synchronizing with 
the virtual arm. The delay in the serial 
communications between the PC and the 
microcontroller board was not considered so when 
the virtual arm arrived at a point it immediately sent 
a command to the physical arm to start moving 
towards the next point. The arm would then abort the 
remainder of the path and immediately start moving 
towards the next point. As a result, the shapes drawn 
looked deformed. Figure 20 shows a sample drawing 
from one of the teams displaying the word “Hi.” 

 
This error cause frustration which is reflected in 

the surveys the students took at the end of the camp. 
However, even the distorted drawing they were able 
to produce resulted in the students displaying great 
excitement. Other factors such as a weak grip on the 
pen and physical play in the arm’s joints also 
produced distortion however the students seamed to 
understand these characteristics. 

    

                   1.73 ms                                                        7.5% + 35°
10.5% − 4.5% 

= 7.50% +1.167% = 8.67% 
                                                                                                     90° − (−90°) 
 
 
 
                              (a) (b) 
 
Figure 19: (a) the PWM signal used to move the servomotor's position to 35 degrees, (b) the calculation for 
computing the required duty cycle for a 35 degree angle. 
 
 

 
 

18.27 ms 
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Figure 20: a sample drawing from one of the arms 

where the arm drew the word “Hi.” 
 

The best way to find errors or weaknesses on a 
software product is to give it to a set of users. Young 
children are exceptionally good at finding error. 
Most of the errors discovered during the camp were 
fixed as soon as they were discovered. Every 
morning each team would start by getting a new 
copy of the software tool with all the errors 
discovered the previous day fixed. 
 

Assessment 
 
Observations show that the students were more 

comfortable designing their arm with the kit as 
opposed to first designing it on paper. They were 
eager to start building. It was hoped that the student 
would first model their theoretical design and test its 
effectiveness using a virtual arm based on their 
model before building. We acknowledge that putting 
a toy in front of a child and telling them not to use it 
yet is impossible. We also acknowledge that it’s 
much harder to measure the D-H parameters from a 
paper design than when the physical arm is present. 
However, they did prefer to program their virtual 
arm first before running their program on the 
physical arm. It was encouraging to see that they 
appreciated the use of their virtual arm in developing 
their programs. There were two reasons for this 
preference. The first is that the virtual arm was more 
reliable and did not require the setup time the real 
arm took before executing the program and the 
second reason is that all 3 members of the team 
could program the arm concurrently since they each 
had their own copy of the virtual arm and the 
software tool. By using and appreciating the use of 
the virtual arm they demonstrated the understanding 
of the concept of modeling and simulation in the 
development process. 

 
It was also noted that the students were very 

motivated to work on their arm. Typically, not 
wanting to stop for lunch and wanting to stay at the 
end of the day. We believe the students were 
motivated by the challenge of having to develop a 

program to control their arm as opposed to just 
building it and controlling it manually with a remote 
control unit. 

 
Although the students did seem to understand what 

the D-H parameters are, they were not able to learn 
how to measure these parameters and needed help 
from the undergraduate students. Learning how to 
measure these parameters is considered difficult for 
undergraduate and even graduate students. 

 
At the end of the camp all teams had a working 

arm that could write. All teams were able to design a 
functioning arm that could perform the task and 
develop a program to move the arm. 

 
The only assessment tool that was used was a 

survey the students filled at the end of the camp. It 
was designed to assess the camp itself and the 
effectiveness of the staff and not for assessing the 
robotic system. Twenty-two participants completed 
the survey. Eighteen of them indicated their favorite 
part of the camp was building the robot. Sixteen 
students indicated that their least favorite part was 
programming the arm, one student indicated it was 
finding the D-H parameters, and 2 indicated their 
least favorite part was starting over with a new 
design once their old design was proved ineffective. 
We believe the frustration with the programming 
was a result of the errors in the software tool. This 
frustration was observed during the camp. Six 
students indicated the lectures teaching them how to 
find the D-H parameters and how to program were a 
bit over their heads. And finally all the students who 
filled the survey indicated that they had fun. 

 
Future  Work 

 
To help the students understand how to measure 

the D-H parameters, we plan on adding a feature that 
will guild the student through the process. Like a 
wizard that will display different options and the 
student can select the appropriate one. Error 
checking will be increased to prevent the program 
from entering invalid states. 

 
It is envisioned that this tool will be made 

available to all who have an interest, however the 
software is not polished or fully tested at this time. 
The method for offering the software is also not 
decided at  this time. 

 
Conclusions 

 
We presented a new robotics based educational 

system for K-12 students. Our goal was to go 
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beyond the traditional activity of building a mobile 
robot and control it using a remote control to an 
activity more closely related to the robotics 
profession including introducing the concept of 
modeling and simulation. We gave a summer camp 
to middle school students that showed they had 
some difficulty learning how to measure the D-H 
parameters of their arm but were able to use the 
virtual arm to develop their program before running 
it on the actual arm. The survey showed they had fun 
and observations showed that they did learn the 
modeling and simulation concept and were able to 
use it to speed the development of their project. 
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