
STUDENT ATTITUDES TOWARDS THE USE OF
 GRAPHICAL PROGRAMMING LANGUAGES IN AN

 INTRODUCTORY ENGINEERING COURSE

Jeremy Garrett, Thomas Walker
Virginia Polytechnic Institute and State University

Abstract

In the fall and spring of 2007 freshmen CS,

CPE, and EE students at Virginia Tech had the
unique experience of working with five or six
programming languages, all within one year and
all for the purpose of developing fundamental
programming skills. One of those languages was
purely educational in nature (Alice), three were
traditional and text-based (C++, Java, and
MATLABTM script), but two were unique
graphical languages (RAPTORTM and
LabVIEWTM). This paper briefly describes how
teaching with graphical programming languages
is consistent with the learning theories of
constructivism and multiple intelligences. This
paper also describes how a survey was used to
take advantage of this unique opportunity to
measure freshman student perceptions of
relevance, general attitude, and
recommendations for further use of each of
these six programming languages. This paper
concludes by describing the results of that
survey and by discussing some implications of
the results.

Keywords: freshman, graphical programming,

computer programming, LabVIEWTM,
RAPTOR

Introduction

In the fall of 2006 and spring of 2007

freshmen engineering students at Virginia Tech
intending to enter into CS, CPE, and EE majors
had the unique experience of working with five
or six different programming languages, all for
the purpose of developing fundamental
programming skills. Of those five languages one
was purely educational in nature (Alice), three
were traditional text-based programming
languages (C++, and MATLABTM script

programming), but two were unique graphical
programming languages (Raptor and
LabVIEWTM). A few of the students also
worked with Java, which is a traditional text-
based language similar to C++. That unusual
circumstance provided a rare opportunity to
probe student attitudes towards the use of
graphical programming languages in
introductory programming courses, and to
compare those attitudes against their attitudes
towards both a purely educational language and
traditional text-based languages in those same
environments. In order to take advantage of that
opportunity a survey was developed and
implemented at the end of the spring 2007
semester. The survey asked the students to
answer a common set of questions, eight
questions for each of the six languages. Those
questions included perceptions of relevance and
perceptions of effects on self-confidence (also
known as “self-efficacy”). The survey also
asked the students whether, or not, they would
recommend each programming language for use
with future students. Although the surveys were
anonymous, standard demographic data was
requested, and that has allowed simple
comparisons to be made not only between
programming languages but also to compare the
attitudes of women and minorities to those of
white males (for this study, the responses of
women and minorities were combined during
the statistical analysis). It should be noted that
the use of the terms “LabVIEW” and
“MATLAB” refer to the registered trademarks
for commercial products developed by National
Instruments and MathWorks, respectively.

Background

During the 2006-2007 school year, two of the

introductory engineering courses began, but did

60 COMPUTERS IN EDUCATION JOURNAL

not complete, a process of transitioning from
Alice to LabVIEW. Because of those reforms,
the existing efforts to expose students to
multiple languages (in an effort to spend
additional time on critical, foundational
concepts, and to enhance the transfer of those
important concepts) resulted in the unique
situation where most students were exposed to
five or six languages within one year, rather
than more typical two to four (C++ or Java,
flowcharting with or without Raptor, Alice or
LabVIEW, and sometimes MATLAB Script).
The key term here is “expose” and, with the
exception of C++ and Java, that was all that
occurred and that exposure took place in a
comparatively active learning environment.

Before continuing, it is important to

understand what the various programming
languages are, the conditions under which the
students were exposed to them, and why those
particular programming languages are being
used in introductory programming/problem-
solving courses. With only a few exceptions, all
of these students were required to study and use
the Alice programming language for three
weeks during their first semester of college in a
general engineering course that is required, for
all freshmen at Virginia Tech. The Alice
programming language (which is named after
the book Alice in Wonderland) is a fairly unique
programming language, in that the source code
is semi-traditional and text-based, but the output
of the program is a three-dimensional,
videogame-like animation, which readily lends
itself to story telling[3]. Some educators and
researchers believe that students who use the
Alice programming language find it inherently
fun and motivating because of the videogame-
like output[7]. Research also shows that female
students are often particularly motivated by
Alice’s story telling capabilities[7].

During that first year, nearly all of the

responding students also took a semester long
course on the C++ programming language,
which generally occurred during their second
semester (when this study was conducted).
Although C++ supports, and is typically used

with, object-oriented programming, it fully
supports “structured programming” and other
non-object-oriented approaches. With some
additional libraries, C++ can be used to create
graphics, and with enough work, it can even be
used to create videogames, but those capabilities
are generally considered to be “advanced
topics” and are thus typically excluded from
introductory C++ courses. As a result, some
students might find working with C++ dull and
boring. On the other hand, the traditional nature
of C++ means that it is used by a high
percentage of professional software
development companies. Because of that, some
instructors believe that students are motivated to
use C++ because of its obvious relevance to
future courses and future job requirements.

When this study was designed the authors

believed that some of the students had taken a
Java class instead of the C++ course, but the
survey indicates that only a few students took a
class in Java, and that many of those did so
during their senior year of high school rather
than at Virginia Tech. Java is like C++ in many
ways; they are both text-based and commonly
used by professional software developers.
Unlike C++, Java is limited to object-oriented
programming (as opposed to “structured
programming”), and as a result, many students
find Java to be a difficult first programming
language. On the other hand, Java’s ability to
run on nearly any hardware and to control
sophisticated web pages may provide students
with higher levels of perceived relevance.

Unlike C++, students were only exposed to

MATLAB script programming for six weeks
during their second semester engineering
course; which, unlike their first semester course,
was specifically for future electrical
engineering, computer engineering, and
computer science students. Like C++ and Java,
MATLAB script is a text-based language, but
unlike C++ and Java, it is not a general-purpose
programming language. Instead, it is used to
automate the features of MATLAB. Although
MATLAB is generally thought of as a tool for
handling mathematics and matrix-based

COMPUTERS IN EDUCATION JOURNAL 61

problems (which is how it earned its name, a
contraction for Matrix Lab), these students were
asked to use MATLAB and MATLAB script to
manipulate audio files and image files which are
stored digitally as large matrices. It was
believed by the designers of that course (two of
which are the authors of this document), that
using MATLAB script in that way would help
the students develop skills and knowledge that
they could transfer to other situations and other
programming courses, while simultaneously
demystifying the audio and video capabilities of
personal computers.

LabVIEW, produced by National Instruments,

was the first of two graphical programming
languages that these students used. Unlike
traditional text-based languages, LabVIEW is
fully graphical in nature, and does not rely on a
linear flow model. Instead, data flows the way
that water and electricity do – data paths can
fork, and merge, and can be either parallel or in
series depending on how they are “wired”
together. As a result, learning theories suggest
that use of this language in introductory courses
has many benefits. First, the theory of multiple
intelligences states that there actually are
multiple, separate types of human intelligence
(bodily-kinesthetic, interpersonal, linguistic,
logical-mathematical, naturalistic, intrapersonal,
spatial, and musical, as opposed to a single type
of intelligence described by “IQ”) and that
education needs to be tailored to the needs of
those students. For example, the theory of
multiple intelligences states that some students
will benefit more from classroom examples that
are visual, while others respond well to verbal
(spoken) input, others to music, and so on.[5]
Although this theory is controversial, studies
have concluded that engineers and engineering
students generally do prefer visual learning
environments.[4,6] Second, the fact that
LabVIEW builds only off of skills and
knowledge that the students should have already
developed in physical science classes, means
they do not need specialized prior knowledge
before they can proceed with learning computer
programming skills (unlike Java, which requires
prior knowledge of abstract class objects).

Similarly, the water flow/electric flow model
used in LabVIEW reinforces skills that these
students are required to use in their subsequent
electrical engineering courses. By building off
of and further developing skills used in other
environments, LabVIEW use promotes deep
understanding of transferable knowledge, and its
use is thus supported by constructivism and
other learning theories.

The other graphical programming language

that the students used is called “RAPTOR.”
Like Alice, RAPTOR was designed specifically
to be an educational language. Unlike Alice, it is
a graphical programming language based on
flow charts[1]. As a result, its use in
introductory programming courses has many of
the same benefits as LabVIEW use, including
being well suited for visual learners. At Virginia
Tech, it was used in the students’ second
semester, after the students had already learned
about flowcharts during their more general, first
semester engineering course. In that way, the
use of Raptor built on students’ existing prior
knowledge of flowcharts[2]. The students
involved in this study were only required to use
RAPTOR for two weeks, but during that time,
they completed programming assignments that
explicitly connected their RAPTOR flowcharts
to MATLAB script, with the idea that this
would promote the transfer of knowledge from
flowcharts to traditional text-based languages.
In that way, its use is also supported by
constructivism and other learning theories.

Problem Statement and

Research Questions

As described, the use of visual/graphical

programming languages would appear to have
more benefit than the use of traditional text-
based languages in introductory programming
courses. However, as cognitive psychology
teaches, student attitudes are critical in the
creation of successful learning environments[8].
As a result, the problem statement for this study
was, “What are student attitudes towards the use
of graphical programming languages in
introductory computer programming courses?”

62 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATION JOURNAL 63

Within that question are several specific
research questions:

I. “Do these students believe that their use of

graphical programming languages increased
their self-confidence in computer
programming more or less than their use of
text-based languages?”

II. “Is the students’ general attitude towards the

use of graphical languages higher or lower
than their general attitude toward traditional
languages?”

III. “Is their perception of the relevance of

graphical languages higher or lower than
their perception of the relevance of
traditional languages?”

IV. “Is their perception of learning gains from

the use of graphical languages higher or
lower than their perception of learning gains
from the use of traditional languages?”

Development Of The Survey Instrument

A survey was developed and later
implemented in order to address the questions
described above. To ensure content validity and
an effective style, the rough draft version of the
survey was presented to several experienced
research faculty, some in Virginia Tech’s
Engineering Education department, and others
in Virginia Tech’s department of Educational
Research and Evaluation. With that input, three
versions of the survey were generated, each
covering the programming languages in a
different order, in order to equally distribute the
negative effects of “tester fatigue” across the six
languages being studied.

The following survey questions were used

with each programming language. For this
particular sample, students were asked about
their perceptions of their use of the Alice
programming language. In order to poll their
perceptions of the other languages, these exact
same questions were used, except that “Alice”
was replaced with the name of the other
languages.

Research Question: Survey Questions:

I.“Do these students believe that their use
of graphical programming languages
increased their self-confidence in computer
programming more or less than their use of
text-based languages?”

1. Using the Alice programming language
helped increase my self-confidence in the area
of computer programming.

(1) Strongly disagree (2) Disagree
(3) Neither agree nor disagree (4) Agree

 (5) Strongly agree

II. “Is the students’ general attitude
towards the use of graphical languages
higher or lower than their general attitude
toward traditional languages?”

2. I would like to have additional
programming activities using the Alice
programming language.

3. I would prefer to use another language
during my introductory engineering courses.

4. I would recommend additional use of this
language in future introductory engineering
courses.

(1) Strongly disagree (2) Disagree
(3) Neither agree nor disagree (4) Agree

 (5) Strongly agree

III. “Is their perception of the relevance of
graphical languages higher or lower than
their perception of the relevance of
traditional languages?”

5. The Alice programming language does not
seem related to my future studies in
engineering.

(1) Strongly disagree (2) Disagree
(3) Neither agree nor disagree (4) Agree
(5) Strongly agree

IV. “Is their perception of learning gains
from the use of graphical languages higher
or lower than their perception of learning
gains from the use of traditional
languages?”

6. I feel that my gains in computer
programming, as a result of using the Alice
programming language, were

(1) Very high (2) High
(3) Average (4) Low
(5) Very low

In order to measure the amount of experience
that each respondent had with each language,

two additional questions were asked just prior to
those shown above.

1. My first use of the Alice programming language was:
(1) before the 9th grade (2) in the 9th grade (3) in the 10th grade
(4) in the 11th grade (5) in the 12th grade (6) as a college freshman
(7) as a college sophomore (8) as a college junior
(9) I have not used this programming language

If you have NOT used this language, make sure that you have selected option #9, and then skip
the rest of this section.

2. I have used the Alice programming language outside of my officially assigned course work
(such as EngE 1104 labs). (Note: Using it as an optional method of completing an assignment –
such as using it to create product design visuals in the lecture/project portion of EngE 1104 –
does count as using this language outside of officially assigned course work.)

(1) true (2) false

64 COMPUTERS IN EDUCATION JOURNAL

Limitations

The research plan called for the survey to be

administered during a standard class meeting.
Although completing the survey was optional,
the expectation was that this procedure would
gather responses from nearly all of the
approximately 280 students. Unfortunately, the
tragic events at Virginia Tech on April 16, 2007
occurred shortly before the survey was to be
administered. To allow for student recovery
from that traumatic event, all classes became
optional during the last three weeks of the
school year. To address that issue, students
remaining on campus were asked to voluntarily
come back to class and fill out the survey for
this study. This resulted in eighty-six completed
surveys.

Another substantial limitation was the unequal

length of exposure to the programming
languages in question. In general the students
only used Raptor, LabVIEW, and Alice for two
or three weeks, and MATLAB Script for six
weeks, but nearly all of the students had either
completed a full semester long course on C++
programming, or were currently about to finish
such a course. Java exposure was unique in that
the students typically had completed a lengthy
course, or had not been exposed to the language
at all.

Delimitations

Some of the survey results were excluded from

the analysis because this study was interested
only in the typical first-year, second-semester
engineering student. Additional data points were
removed due to incorrectly completed survey
forms, such as those that reported negative years
of experience with a language (they reported
their first use to be at a grade level higher than
their current grade level). A few more were
removed because they simply reported no use of
a language but then responded to questions
about that language. Responses from students
who described themselves as non-freshmen /
non-first-year students, non-engineering
students, were also removed. Similarly, students

who were not at least eighteen years old were
removed. Thus, the data was filtered and sixty-
eight valid data points remained.

Data

Histograms of students’ responses were
generated for each survey question. In the case
of the first research question, no special
calculations were required. For the second
research question, the results of survey question
number three were reversed (a “1” became a “5”
and vice versa), and then averaged with the
results of questions two and four. For the third
and fourth research questions, the results of the
relevant questions (numbers five and six,
respectively) were simply reversed. Then the
responses to those questions about C++, Java,
and MATLAB Script were averaged together to
produce mean responses about “traditional, text-
based languages.” Similarly the responses to
those questions about LabVIEW and Raptor
were averaged together to produce mean
responses concerning “visual / graphical
programming languages.” Alice however was
treated as its own category.

In order to gain some insight into how the use

of these languages might or might not be
compatible with a diverse student population,
data from the twenty-seven students who were
either female or a member of a minority racial
group have been highlighted in the following
graphs by making the data from those students a
darker color. Because some students were not
exposed to all of the languages (especially Java)
and because some of the respondents did not
answer every question on the survey, the
number of data points for each programming
language was unique. With the exception of
Java (which had thirty-nine complete and usable
responses), and C++ (which had forty-eight);
the number of complete, usable responses for
each language was between sixty-two and sixty-
five. The number of responses for traditional
languages and graphical languages is slightly
higher than sixty-five, because the incomplete
responses (due to both lack of experience with a
given language and simple lack of completing

COMPUTERS IN EDUCATION JOURNAL 65

the survey) were distributed across all of the
programming languages rather than isolated to a

single language or to a single language category.

Research Question I – “Do these students believe that their use of graphical programming languages
increased their self-confidence in computer programming more or less than their use of text-based
languages?”

Research Question II – “Is the students’ general attitude towards the use of graphical languages higher
or lower than their general attitude toward traditional languages?”

Research Question III – “Is their perception of the relevance of graphical languages higher or lower than
their perception of the relevance of traditional languages?”

66 COMPUTERS IN EDUCATION JOURNAL

Research Question IV – “Is their perception of learning gains from the use of graphical languages higher
or lower than their perception of learning gains from the use of traditional languages?”

Data Analysis

Before continuing with an analysis of the
histograms, it is important to examine the
internal reliability of the data. One of the most
common measures of internal reliability is
“Cronbach’s Alpha,” which measures the
tendency for responses to individual items to go
up while the overall average goes up. Although
this system has a maximum potential value of
1.0, at which point all survey responses move up
and down together, a value of 0.70 or higher is
typically considered satisfactory. Completing
such a calculation for this data yielded a value
of 0.85, indicating the data has a satisfactory
level of internal reliability and that the data
analysis can be continued.

First, it should be noted that part of the reason

for the smaller standard deviations found in the
data on traditional languages is caused by
averaging over three separate languages.
Although not shown, the standard deviations of
the individual traditional languages and
individual graphical languages were
approximately equal and all slightly smaller
than the corresponding standard deviations for
the data on the Alice programming language.

Second, note that the highlighted data points,

which represent students who are either females
or members of minority racial groups, are
approximately evenly distributed in all of the
histograms. With all four research questions,
two-tailed Student t-Tests were used to

determine whether the responses concerning
traditional languages was statistically above or
below the responses concerning graphical
programming languages. Using an alpha level of
0.10, produced the following results:

Conclusions

In spite of the limitations, the overall trends

within the data do provide answers to the
original research questions. The first question
was, “Do these students believe that their use of
graphical programming languages increased
their self-confidence in computer programming
more or less than their use of text-based
languages?” The data indicates that students
believed that even their short exposure to
graphical programming languages produced the
same amount of increase in self-confidence (or
self-efficacy) as their use of traditional, text-
based languages.

The second research question was, “Is the

students’ general attitude towards the use of
graphical languages higher or lower than their
general attitude toward traditional languages?”
Statistically the general attitude of these

Research
Question #

p-value Reject the Null
Hypothesis?

I 0.2015 No
II 0.6145 No
III 0.3031 No
IV 0.0176 Yes

COMPUTERS IN EDUCATION JOURNAL 67

particular students towards the use of graphical
languages is the same as their general attitude
towards the use of traditional, text-based
languages.

The third research question was, “Is their

perception of the relevance of graphical
languages higher or lower than their perception
of the relevance of traditional languages?”
Students perceived graphical languages to have
the same relevance towards their future studies
as traditional languages.

The fourth, and final, research question was,

“Is their perception of learning gains from the
use of graphical languages higher or lower than
their perception of learning gains from the use
of traditional languages?” Unlike the previous
research questions, the data produced a p-value
of only 0.0176 (or 1.76%), meaning that the null
hypothesis must be rejected. That means that
students perceived higher total learning gains
from their use of traditional languages than from
their use of graphical languages. However, this
is consistent with the amount and type of
exposure the students had with the various
languages – they used graphical languages for
only two or three weeks each, focusing almost
entirely on introductory concepts, but nearly all
of these same students spent three or more
months working with C++ while focusing on a
variety of concepts.

Implications

Several implications arise when analyzing the
answers to the four research questions together.
First, even though these students were only
briefly exposed to graphical programming
languages their overall attitudes towards those
languages were similar to their attitudes
concerning traditional languages Although
further studies would be required for
verification, these results suggest that graphical
programming languages correctly build off the
students’ prior knowledge, and suit their
learning styles (believed to be primarily visual).
That in turn suggests that additional use of
graphical programming languages would be

beneficial to freshmen electrical engineering,
computer engineering, and computer science
students at Virginia Tech during their
introductory programming courses.
Unfortunately the tragedy at Virginia Tech on
April 16, 2007 limited the number of
respondents to not only a smaller than expected
sample set but also limited them to the sub-set
of the overall population that wished to return to
class after the tragedy. As a result, a follow-up
study is needed to expand the results of this
study onto the entire population of electrical
engineering, computer engineering, and
computer science freshmen involved in
introductory programming courses.

References

1. Carlisle, M. C. Welcome to the Raptor home
page. Retrieved November 19, 2007 from
http://raptor.martincarlisle.com/

2. Carlisle, M. C., T. A. Wilson, J. W.

Humphries, and S. M. Hadfield, “RAPTOR:
A Visual Programming Environment For
Teaching Algorithmic Problem Solving,”
Proceedings of the 36th SIGCSE Technical
Symposium on Computer Science
Education, ACM Press, 2005, 176-180.

3. Carnegie Mellon University, Alice: An

Educational Software that Teaches Students
Computer Programming in a 3D
Environment, Retrieved November 19, 2007
from http://www.alice.org/.

4. Felder, Richard M., “Learning and Teaching

Styles in Engineering Education,”
Engineering Education, ASEE, 1988, 78(7),
674–681.

5. Gardner, Howard, Multiple Intelligences after

Twenty Years, Retrieved November 19,
2007, from http://pzweb.harvard.edu/
PIs/HG.htm,

68 COMPUTERS IN EDUCATION JOURNAL

http://www.alice.org/
http://pzweb.harvard.edu/

COMPUTERS IN EDUCATION JOURNAL 69

6. James-Gordon, Yvette and Jay Bal,
“Learning Style Preferences of Engineers in
Automotive Design,” Journal of Workplace
Learning, 2001, 13(6), 239-245.

7. Kelleher, C. and R. Pausch, “Lowering the

Barriers to Programming: A Survey of
Programming Environments and Languages
for Novice Programmers,” ACM Surveys,
June 2005, Retrieved November 19,
2007from http://www.cs.cmu.edu/~caitlin/
research.htm.

8. National Research Council, How People

Learn: Brain, Mind, Experience and School,
ed. J.D. Bransford, A.L. Brown, and R.R.
Cocking, Washington, DC, National
Academy Press, Retrieved November 19,
2007 from http://books.nap.edu/books/030
9070368/html/index.html

Biographical Information

Jeremy Garrett is currently working on his

Ph.D. in Curriculum and Instruction, with a
specialization in Integrative S.T.E.M.
Education, at Virginia Tech. His doctoral
research, which he has recently begun, is on
college freshmen-level engineering design
curriculum. He has an M.S. in Applied and
Industrial Physics from Virginia Tech, and a
B.S. in Physics from Western (North) Carolina
University. He has been teaching freshmen and
sophomore general engineering courses for the
last four years (some years as a lead teacher /
instructor and some years as an assistant /
GTA). Prior to that, he worked, for
approximately two years, doing a combination
of computer programming (primarily C++ and
LabVIEW) and engineering research (fiber optic
sensor design and testing as well as automotive
adhesive testing).

Tom Walker is an associate professor in the
Engineering Education Department at Virginia
Tech. His research interests are in the areas of
active and collaborative learning, both
synchronous and asynchronous in the
engineering learning space, educational
technologies, distance-learning, engineering
educational reform, and object-oriented
engineering design.

http://www.cs.cmu.edu/%7Ecaitlin/
http://books.nap.edu/books/030%209070368/html/index.html
http://books.nap.edu/books/030%209070368/html/index.html

