
44  COMPUTERS IN EDUCATION JOURNAL 

LEVERAGING   HISTORICAL   TIES   BETWEEN   COGNITIVE   SCIENCE 
AND   COMPUTER   SCIENCE   TO   GUIDE   PROGRAMMING   EDUCATION 

 
Darren  K.  Maczka,  Jacob  R.  Grohs 

Engineering  Education 
Virginia  Tech 

 
Coding  for  Everyone 

 
In the past few years, there has been increasing 

interest in encouraging more people, regardless 
of background, to learn to program. In fact, 
President Obama recently made a statement 
calling on all children to have the opportunity to 
learn about computer science [1]. Sites such as 
code.org promote CS education opportunities 
for all, citing statistics about STEM jobs and 
arguing that in the 21st century, knowledge 
about computer science is foundational [2]. 
Many institutions of higher education either 
have programming requirements for non-
computer-science majors, or have been 
expanding programming to non-majors [3,4,5]. 
At our institution, all first year general 
engineering students are required to complete an 
introductory programming module as part of 
their first-year engineering course, and in 
general “basic programming skills” is a common 
desired outcome across engineering curricula 
[6]. 

  
This coding-for-all paradigm juxtaposed with 

the observation that technology is changing 
rapidly, and the half-life of technical skills is 
decreasing [7], might seem to indicate that 
teaching programming is a questionable use of 
class time: the language and paradigm students 
are taught will likely not be the same they are 
asked to use in their first job post-graduation. 
However, if we acknowledge that learning to 
program is more than simply learning to write 
code, and in particular, if we draw on work from 
the early era of computing which closely linked 
programming to problem solving and cognitive 
skills, we can argue that regardless of language 
or paradigm, learning to program may actually 
be a way to learn to problem solve, organize 
knowledge, and reason about processes. 

At the dawn of the computing revolution, 
visionaries predicted that computers had the 
potential to “augment the human intellect” [8], a 
much more expansive view than simply 
becoming tools to automate tedious calculations. 
In other words, computing allows for new ways 
of dealing with complexity, and provides new 
metaphors for thinking about systems [9]. Early 
work demonstrated that with the aid of 
computers, children could engage with tasks and 
concepts that had previously been considered 
“advanced”, and through interacting with 
computers, children could become more aware 
of their own cognitive processes [10]. Thus, the 
fact that specific technologies may be obsolete 
by the time students graduate may be beside the 
point, there are lasting cognitive benefits that 
learning to interact with a computer can provide. 

 
While there are some recent studies which 

investigate programming education as a means 
of teaching problem-solving, there is also a 
large body of research that primarily focuses on 
teaching students the details of how to code. We 
argue that in most cases these details are less 
important than centering programming 
education around problem-solving skills. If we 
make learning problem-solving skills a goal of 
introductory programming courses, then all 
aspects of the course, from the course 
objectives, to the curriculum used, to the 
assessments administered, must be chosen 
intentionally with this goal in mind. 

 
In this paper we will present a brief summary 

of current published work on introductory 
programming education. In particular, we will 
explore the alignment of course objectives, 
pedagogical strategies, and assessments, and 
will offer a potential framework to help think 
about both the design and evaluation of 



COMPUTERS IN EDUCATION JOURNAL  45 

introductory programming courses. We will 
then provide a hypothetical case study of an 
introductory programming course organized 
around this framework and discuss implications 
of different instructional strategies through the 
lens of a theory of cognitive processes called 
cognitive load theory. 
 

Methods 
 
Assuming that there would be more 

comprehensive research of introductory 
programming in the computer science 
community, we began with targeted searches of 
the ACM digital library for the key phrase 
‘introductory programming’. Once we found 
key papers that seemed to indicate a call to 
action [11,12] or a survey of practices [13,14] 
we used the ‘cited by’ list to find additional 
relevant papers. 

 
Because the literature search of introductory 

programming resulted in a variety of examples 
of how and why programming was taught, we 
needed a documented framework to consistently 
evaluate each one and guide our hypothetical 
course design. Starting from Jamieson and 
Lohmann’s (2009) call to ground educational 
research activities in how people learn, we 
identified the concept of constructive alignment 
as a promising framework to evaluate and 
design learning environments. Following the 
references in Jamieson and Lohmann’s report as 
well as conducting targeted literature searches 
for “constructive alignment” we were able to 
find descriptions of this framework 
[15,16,17,18]. 

 
Current  State  of  Research 

 
The bulk of literature about teaching 

introductory programming (CS1) revolves 
around what paradigms are “best” (e.g. 
procedural vs. object oriented [19,20,21]), 
which language is “best”, often times with 
regard to a particular paradigm (e.g. object 
oriented programming (OOP) with Python vs. 
Java [22,23]), and best teaching practices (e.g. 
use of “pair programming” environments 

[24,25,26,27,28]). However, the reasons for 
picking one paradigm over another tend to be 
about industry demand, rather than intentionally 
choosing a paradigm to support the learning 
objectives of the course. This behavior, adopting 
a popular practice into a learning environment 
without critically analyzing whether or not it is a 
good fit, is by no means exclusive to 
programming education. For example, flipped 
classrooms [29], in which students are asked to 
watch recorded lectures at home and use class 
time for working on activities, has recently been 
a hot topic in higher education and there have 
been a continuous number of examples of well-
intentioned practitioners flipping their 
classroom without adjusting course objectives, 
content, and activities to work under the flipped-
classroom model [30]. Likewise, anyone can 
teach elements of object oriented programming 
in their introductory programming courses, but 
unless critical aspects of the course are adjusted: 
background reading, rethinking what the 
“fundamental concepts” are, the types of 
problems assigned, and methods of assessment, 
the incorporation of OOP will likely create 
confusion for students and frustration for 
instructors [12].  

 
Trends  in  Programming  

Education  Research 
 
A 2003 study by Robins, Rountree, and 

Rountree identifies four trends in research of 
programming education: 1) distinguishing 
between novice and expert programmers with 
emphasis on deficiencies of novices, 2) the 
distinction between knowledge and strategies, 3) 
the distinction between program comprehension 
and generation, and 4) a comparison of OOP to 
procedural styles of programming [14]. They 
found that the biggest challenge for novice 
programmers was not in understanding the basic 
concepts, but knowing how to apply them. This 
finding is consistent with current understanding 
of how we learn [31,32], and with studies of 
expert/novice behavior in other domains, such 
as statics [33]. In both cases the suggestion is 
that helping students learn strategies that work is 
crucial to helping them become effective 



46  COMPUTERS IN EDUCATION JOURNAL 

novices, i.e. devote instructional time to 
problem-solving strategies and how to apply 
them. 

 
A 2001 study by McCracken et al. [11],  which 

concluded that regardless of nation or 
institution, most students do not know how to 
program by the end of their introductory 
programming courses, sparked much 
conversation and a push to reform introductory 
programming in the next decade. Like the 
previous example of adopting novel pedagogical 
practices without adjusting other aspects of the 
course, this phenomenon is also not exclusive to 
introductory programming: disconnect between 
what we think we are teaching and what 
students learn has been observed across 
engineering [34,35]. Possible ways of 
addressing this disconnect include recognizing 
differences in students’ prior knowledge, 
helping students see connections between 
abstract concepts, and relating difficult concepts 
to ones the students already know [34,36].  

 
While the McCracken et al. study validated the 

experiences of many introductory programming 
instructors, it did not result in critical change to 
address the problems. Rather, what we have 
seen since the 1990s has been an increasing 
interest in where object oriented programming 
should be placed within the curriculum with 
debates between objects-first vs procedural-first, 
but little question of why object oriented design 
should be included at all other than that it 
continues to be a popular paradigm in industry. 

 
There remains a desire that introductory 

programming courses should teach problem-
solving skills, though only a few authors present 
evidence that the implementation of this goal is 
informed by cognitive science [37,38,39]. One 
thread in particular has received regular 
attention: East et al. propose a pattern-based 
approach that places emphasis on recognizing 
and learning to work with algorithmic patterns 
over syntax and design paradigms [40]. This 
approach closely aligns with understanding of 
differences in expert/novice behavior by helping 
students identify patterns of solutions and 

learning how and when to apply them to 
particular problems [38,40,41,42]. 

Pears et al. conclude their 2007 literature 
survey with the observation that despite the 
volume of work exploring the implementation 
of introductory programming courses, “there is 
little systematic evidence to support any 
particular approach” [13]. We think this could 
be due to two reasons: 

 
1. There has been a lack of consensus on 

what the goals of an introductory course 
should be: the ability to write a complete, 
working program, the ability to answer 
conceptual questions about computing and 
computer science, or the ability to analyze 
problems and design solutions (problem-
solving). The “appropriate” approach to 
teaching would depend on the goal. 

 
2. Even if goals were clearly stated, it is 

likely that many different approaches 
could be used successfully if chosen 
intentionally to align with the goals and 
measurements of success (assessment). In 
many of the studies, it is not immediately 
clear if the measures of success used are 
appropriate for the stated objectives. That 
is to say, the assessments used might not 
always be measuring all aspects of the 
desired learning objectives. 

 
Finally, in 2014, Koulouri, Lauria, and 

Macredie conducted a quantitative analysis of 
different approaches to teaching introductory 
programming by varying three aspects: the 
language used, providing formative feedback, 
and introducing explicit problem solving 
training [23]. They found that choosing a 
language with a simpler syntax (Python instead 
of Java), and introducing explicit problem-
solving training, improved student learning. 
They also found, however, that providing more 
formative assessment did not seem to help. They 
speculate that the reason for the latter finding 
could be that students do not spend time looking 
at formative feedback, or do not understand the 
feedback that is given. 

 



COMPUTERS IN EDUCATION JOURNAL  47 

We wish to build upon the past reviews of the 
field by suggesting an approach to designing 
learning systems that may help to consistently 
address some of the shortcomings observed, and 
bring understanding to the successes. A large 
number of papers surveyed contain discussions 
of course objectives, pedagogical tools used, 
and assessments given, but rarely are these three 
components discussed together. We know from 
the engineering education literature that an 
effective learning system depends on the 
alignment of these three components [15,16]. 

 
Components of a learning system. A popular 

way to visualize an effective learning system is 
as a triad of objectives, instruction, and 
assessment [17], shown in Figure 1. The design 
of these three components is not sequential: 
each informs the other. 

 
 

Effective learning systems.  Assessment 
results can help inform changes to course 
objectives and instructional methods [17]. 
Similarly, as instructional methods improve, the 
objectives may be modified to aim for higher 
levels of understanding. Being intentional about 
these interactions is crucial to an effective 
learning system; if the assessment addresses 
lower levels of learning than the objectives 
specify, “the system will be driven by backwash 
from testing, not by the curriculum.” [18]. For 
example, if an objective of a programming 
course is that learners will develop problem 
solving skills, but assessment only consists of 
tests of programming concepts and syntax, 
teaching/learning activities would tend to center 
around those that promote understanding of 
these concepts and exclude activities that might 
have a better chance at promoting general 
problem solving [18].  

 
 
 

 
 

Figure 1: Learning system as derived from Felder and Brent [17]. 



48  COMPUTERS IN EDUCATION JOURNAL 

A  Hypothetical  Case  Study 
 
As noted, teaching OOP is a common area of 

interest in the literature. While Robins, 
Rountree, and Rountree note there is a lack of 
evidence supporting any claim that OOP makes 
modeling problems any easier [14], we will 
incorporate it into a hypothetical introductory 
programming course to explore how its 
inclusion would affect the constructive 
alignment between course objectives, 
instructional methods, and assessment. 

 
It should be strongly noted that we are not 

advocating for OOP as a “best” teaching 
paradigm. Rather, we want to point out that 
from what has been reported, teaching OOP 
effectively can be challenging. What many 
implementations seem to miss is that OOP 
defines an entirely different paradigm for 
problem solving than is used in procedural 
programming [12]. As should not be surprising, 
there are some problems for which OOP 
provides a good set of tools to solve in an 
efficient, elegant manner, namely those with 
solutions that naturally map to real-world 
objects [43]. Different problems may be better 
solved using a procedural, functional, or data-
flow paradigm [9,44,45].  

 
Ultimately, our goal should be to help students 

analyze problem structures and make informed 
decisions regarding what paradigm would be 
best for a particular problem. What is not clear 
from the literature is whether or not this 
consideration is made when designing problems 
for a particular course. Indeed, in some cases 
there is evidence that OOP concepts are added 
to a course “on top of” older content, without 
necessarily changing the problem sets [12,46].  

 
Cognitive load theory. Cognitive load theory 

(CLT) is based on the premise that the capacity 
of our working memory, where all conscious 
cognitive processing takes place, is finite and 
relatively small: we are able to manage 2-3 
interacting elements at a time. Examples of 
“interacting elements” in the current context 
would be recalling and using the syntax and 

grammar of a particular programming language, 
reasoning about the behavior of a single object 
in an OOP environment, or reasoning about a 
solution to a particular high-level problem. CLT 
posits that in light of this finite capacity of 
working memory, for learning to occur, all 
aspects of a task must fit into this finite space. 
While some contributors to cognitive load are 
necessary for the task at hand, others are not 
[47]. Cognitive load can be divided into three 
different categories: intrinsic cognitive load is 
due to the complexity of the task itself and 
generally cannot be reduced without simplifying 
the task. Extraneous cognitive load is associated 
with work that is due to the instructional 
method, but not part of the task at hand. For 
instance, if the educational goal is to complete a 
programming task, but learners must search and 
interpret reference material in order to do so, the 
search and interpretation of this material would 
be considered extraneous cognitive load. 
Finally, germane cognitive load is also a result 
of the instructional design, but unlike 
extraneous load, germane load enhances the 
learning process. For instance, if a learning goal 
is that students are able to navigate and use 
reference material, then the previous example 
would be considered germane cognitive load. 
What this example highlights is that whether 
complexity due to the instruction design is 
extraneous or germane depends on the specific 
learning goals. The role of the instructional 
designer then is to be aware of intrinsic load, 
reduce extraneous load and intentionally 
managing germane load. 

 
Object oriented programming. Alan Kay 

originally conceived of object oriented 
programming as one way to think about 
complex systems [9]. The underlying metaphor 
of Kay’s conception for OOP was the biological 
cell: each object is designed to accomplish a 
specific set of tasks such that the complexity of 
these tasks is encapsulated within the object. 
Objects interact with one another by sending 
and receiving messages, and systems of these 
objects are assembled to solve complex 
problems [9].  

 



COMPUTERS IN EDUCATION JOURNAL  49 

In several reports of attempts to incorporate 
OOP into introductory programming courses, 
practitioners worried that time devoted to OOP 
concepts would necessarily reduce time spent on 
the “basics of programming”, usually defined as 
conditional statements, loops, and in some cases 
pointers. This concern is misplaced; under an 
OOP paradigm the “basics of programming” are 
not the same as when working from a 
procedural paradigm. OOP defines a completely 
different set of tools for problem solving, and it 
is these tools and concepts that become the 
“basics”: objects, messages, inheritance, and 
polymorphism [9,12]. 

  
For instance, if taking a patterns-based 

approach to teaching programming, one could 
use either a procedural paradigm or an OOP 
paradigm, but the fundamental patterns would 
be quite different depending on the paradigm. 
[42]  Useful procedural patterns might be: 

 
read-evaluate-print reading a piece of data, 
evaluating it, and output the result. 
guarded-action if a guard-condition is 
satisfied, take action.  
 
While useful OOP patterns might be: 
 
state provide controlled access to a body of 
data. 
view decouple an object’s state from its 
representation. 
decorator add functionally to an object 
without modifying its internal structure. 
 
Ultimately, if our goal is to teach problem 

solving in general, we would be doing a grave 
disservice to our students to leave them with the 
impression that there is only one paradigm, 
whether it be OOP, procedural, functional, or 
something not yet invented. As previously 
mentioned, OOP and procedural paradigms are 
comprised of fundamentally different concepts 
for problem solving, and so again is the 
functional paradigm. Unsurprisingly, there is no 
paradigm that is the “best” fit for every 
problem. Leaving students with the belief that 
only one paradigm exists makes it very difficult 

for them to learn how to intentionally select and 
apply the “best” paradigm to solve a particular 
problem. 

 
Kölling argues that performing a paradigm 

shift from procedural style to OOP is difficult, 
and so concludes that if OOP is a desired 
outcome then it should be taught first since the 
reverse shift, from OOP to procedural, is 
conceptually easier. What this recommendation 
neglects to account for however is that both 
paradigms depend upon authoring programs in 
some language, and this authoring process takes 
a certain amount of cognitive capacity. To 
justify an objects-first approach we would have 
to verify that the cognitive load associated with 
OOP concepts themselves combined with the 
cognitive load of learning to author a program in 
a particular environment, does not exceed the 
learner’s working memory capacity. 

 
In a superficial way, CLT theory would 

suggest that OOP is a helpful paradigm for 
managing cognitive complexity: objects 
encapsulate complexity by hiding the details of 
implementation behind a simple interface. For 
example, an object that represents a list of items 
may have operations to add and remove items 
from the list. Conceptually we can use this 
object with our common understanding of what 
it means to “add” an “item” to a “list”. 
Critically, we do not need to be aware of how 
the adding and removal of the item is actually 
implemented in code, or even how the storage is 
structured in memory (e.g. an array or a linked-
list). We refer to this use of CLT to justify the 
reduction of complexity of OOP as superficial 
because it focuses on only the conceptual 
paradigm itself without regard to implementing 
it in some programming environment. In 
practice, we usually ask our students to 
implement OOP concepts in a particular 
programming language. That task requires not 
only understanding OOP as a paradigm, but also 
working with the programming environment, 
authoring a program, understanding the syntax 
and grammar of the language, and most likely 
debugging it as well. 

 



50  COMPUTERS IN EDUCATION JOURNAL 

Cognitive challenges teaching OOP. A 
behavior that characterizes expert programmers 
is the ability to easily shift between different 
abstraction layers of a problem space [48].  This 
ability may be especially crucial to becoming 
fluent in OOP as the concepts are somewhat 
further removed from the actual syntax than in 
other paradigms. For example, in the procedural 
paradigm the central concept is that of the 
procedure, or subroutine. Subroutines are 
simply collections of imperative commands 
grouped together under a label. Thus, if 
someone can write and understand imperative 
code, the conceptual leap to understanding the 
procedural paradigm is relatively small. In 
contrast, to understand objects in OOP one must 
understand the concept of state and methods 
operating on the state. Both state and method 
are implemented with code (generally 
imperative), but to understand how an object 
functions one has to imagine its initial state, and 
then how each method call would change this 
state. Cognitive load theory would suggest that 
understanding the dynamic interaction of state 
and method calls is more challenging than 
grouping lines of imperative codes into re-
usable procedures. Thus to be fluent in OOP 
design, a programmer must be able to switch 
between thinking at the object layer and the 
program layer. Teaching abstraction is best done 
by doing it by example, while being explicit 
about the abstractions used [48]. However, we 
must keep in mind the limited capacity of 
working memory: if the cognitive load 
associated with writing code and thinking about 
state and methods fills up a learner’s working 
memory, the learner may have difficulty 
grasping concepts of abstraction, even when the 
instructor explicitly points them out. To reduce 
the cognitive load associated with writing code 
and working with object state and methods, 
these tasks must be practiced until somewhat 
automated: to a point at which they can be done 
without conscious thought [32].  

 
Language choice. Choice of language does 

matter: If the learning objectives of an 
introductory programming course are to learn 
problem solving concepts then a language with 

a simpler syntax is preferable to one with more 
complex syntax features [23]. The explanation 
for this can be found in CLT. Given the current 
example of a goal to teach problem-solving 
techniques, there will be cognitive load 
associated with thinking about different 
strategies one could use. Learning the syntax 
rules of a programming language adds to the 
cognitive load, but it does not aid in the process 
of learning problem-solving techniques. In other 
words, learning the syntax of a programming 
language is an extraneous cognitive load in this 
context. Thus, it is in the educator’s best interest 
to minimize cognitive load associated with 
features that do not directly help with the 
learning objectives of the course and select a 
teaching language with easy-to-learn syntax. 

 
In an attempt to address the concern that the 

two primary languages, C++ and Java, used to 
teach OOP in introductory courses may be too 
complex for novice students, Goldwasser and 
Letscher select Python as a good choice for 
introductory programming. They claim that its 
relatively simple syntax allow new students to 
better engage with the OOP concepts rather than 
getting bogged down by details of the language 
[22]. 

 
Iconic versus textual languages. In theory, an 

iconic programming environment such as 
Scratch [49] or Alice [50] should aid in the 
learning of higher level concepts, such as those 
associated with OOP, since graphical languages 
eliminates the extraneous cognitive load of 
dealing with syntax and grammar of a language. 
In fact, there has been success in using iconic 
languages to teach first year programming [51], 
and research indicates that teaching graphical 
programming first does not inhibit a student 
from later transferring learned high level 
concepts to textual programming languages 
[52].  

 
Snook et al. describe efforts to use the Alice 

programming environment to teach introductory 
programming concepts [53]. Interestingly a later 
report assessing the efficacy of the curriculum 
using Alice indicated that while pre-post testing 



COMPUTERS IN EDUCATION JOURNAL  51 

indicated learning gains with the environment, 
focus group data indicated a dissatisfaction with 
Alice as an introductory language, resulting in a 
switch to LabVIEW [54]. A possible 
explanation given for the dissatisfaction of Alice 
was that students did not perceive it as being a 
“real” programming environment they might 
use in industry, while LabVIEW was. Certainly, 
helping students connect the utility of skills they 
learn in the classroom to those that will be 
important in their later career is important. In 
some cases, switching to a tool that is known to 
be used in industry may be useful, though this 
approach seems shortsighted: it is unlikely that 
all graduates will end up in an industry that uses 
a particular tool (e.g. LabVIEW), so if that is the 
motivation for a particular tool we must still 
address the utility of this tool to students who 
may never have reason to use it again. A 
different strategy than swapping tools is to 
better articulate why a particular tool was 
chosen for the learning environment. Students 
might have less resistance to an educational 
environment such as Alice if they know that it 
can help them learn high level concepts that will 
be directly applicable to their future career and 
that the use of Alice as an introductory 
environment will not hinder them from later 
transferring those concepts to other 
environments. 

 
Problem solving. Developing problem solving 

skills was widely regarded as a common 
objective for introductory programming courses. 
Achieving this objective is more likely if the 
course begins with a focus on problem solving 
strategies, before any programming is 
introduced [23]. Separating problem-solving 
instruction in this way has a number of benefits 
grounded in cognitive science research: first, it 
serves to activate prior knowledge [55]. With 
problem-solving strategies fresh in their 
memory, learners will more easily apply them 
when they begin programming. Second, it helps 
manage cognitive load. Whereas in the previous 
example of language choice, we reduced 
cognitive load by choosing a language with a 
simpler syntax, here we separate two tasks that 
we know individually demand a high level of 

cognitive load for novices: learning problem-
solving strategies, and learning programming 
techniques. 

 
Assessment 

 
Often times assessment becomes the weak 

point of a learning system. Designing good 
assessment is hard [56,57], and often good 
assessment can require significant time on the 
part of the instructor. Because of this, 
assessment is often simplified, lowering the 
effectiveness of the entire system. 

 
If our course objective is to teach learners to 

solve problems with programming, then an ideal 
assessment would be to give students a problem 
to solve, ask them to write a program to solve it 
as well as reflect upon the patterns they used in 
their solution. Asking for reflection prompts 
students to engage in meta-cognition, becoming 
aware of their own thinking process, which 
helps them become more effective learners 
[55,58]. Of course evaluating this type of 
assessment is much more time consuming than a 
multiple-choice exam that can be automatically 
scored, or even than evaluating that the finished 
program runs correctly, which can be done 
automatically as well [59].  

 
Considerations  and  Limitations 

 
In the above hypothetical example, we had the 

luxury of complete freedom in designing all 
aspects of an introductory programming 
curriculum. We recognize this is almost always 
never the case in practice; however, we argue 
that following a framework, such as 
constructive alignment, as close as possible will 
help. Thinking about the framework will also 
encourage critical engagement with the 
constraints imposed by the institution. For 
example, there has been much interest in 
assessment tools used for introductory 
programming courses [56,60,61], and in 
particular, automated assessment [57,59,62]. In 
many cases the push towards automated 
assessment techniques is a response to 
increasing class sizes that instructors typically 



52  COMPUTERS IN EDUCATION JOURNAL 

have little control over. In the event that a large 
class size dictates that some form of automated 
assessment be used, following the constructive 
alignment framework would constrain the types 
of course objectives and instruction that would 
be feasible. For instance, if the primary course 
objective was to teach conceptual understanding 
of computer science, then a well-designed 
multiple-choice assessment could be used 
effectively [56,60]. Using the framework of 
constructive alignment to critically evaluate the 
alignment of assessment, objectives, and 
instruction, may help make explicit some of the 
compromises that must be made for larger class 
sizes. This positions the course designers to be 
more intentional about what compromises to 
learning are made. 

 
Discussion  and  Future  Work 

 
This literature review was by no means 

comprehensive, but we hope that it touched 
upon some of the notable areas in which 
educators have been experiencing challenges 
and successes in teaching introductory 
programming. We have pointed out a number of 
possible connections between computer science 
and cognitive science that may be worth deeper 
investigation. While we have seen how 
cognitive load theory can help reason about 
course design, there are also potentially 
interesting connects between cognitive load 
theory and object oriented design: objects are 
designed to encapsulate complexity to better 
manage it. Additionally, further exploring 
concepts of knowledge organization and 
differences between novices and exports may be 
a fruitful area to investigate the use of teaching 
programming to aid in analogical reasoning and 
abstract thinking [63]. 

  
An area that has not been addressed in this 

paper but has strong connections is that of 
attention in cognition [64]. There are strong 
parallels between our limitations to focus our 
conscious attention at one or two tasks at a time, 
and the serial processing inherent in most 
computing and language design. Of particular 
interest is the move in hardware to increasingly 

parallel designs to keep pace with Moore’s law. 
Our cognitive constraints of attention may 
suggest an inherent difficulty in thinking and 
reasoning about parallel processing that must be 
addressed if we want to prepare students for an 
environment that demands parallel-processing 
solutions to programming problems. These 
demands may shift focus to languages such as 
Erlang that are designed for high levels of 
concurrency, result in more interest in 
functional paradigms over OOP, as well as 
demand we adopt different metaphors for 
computing altogether [65].  

 
Conclusion 

 
Recognizing that introductory programming is 

a common component of an engineering 
curriculum, and that there is a national push to 
introduce it to an even larger population, it is 
important to think carefully about how we 
design programming education to impart the 
cognitive skills that will generally benefit 
learners even after the specific technologies they 
learn are no longer relevant. We strongly 
advocate for the use of a framework such as 
constructive alignment, described in this paper, 
to inform the choices for course objectives, 
instructional techniques, and assessments. Using 
such a framework well help identify 
components of a course that may be 
contributing unnecessarily to cognitive load, or 
reasons why student outcomes might not match 
expectations assumed from course objectives. 

 
Analyzing a proposed curriculum through the 

lens of cognitive load theory can aid in 
instructional decisions that will increase the 
chance of achieving learning goals. Educators 
must critically review the goals of their 
introductory programming courses: if goals are 
to understand high level concepts such as OOP, 
but not necessarily implement these concepts in 
textual languages, it may be prudent to consider 
iconic languages for these courses. If, however, 
goals include learning OOP concepts and 
implementing these concepts in textual 
language, educators must be aware of the 
increased cognitive load associated with each of 



COMPUTERS IN EDUCATION JOURNAL  53 

these tasks and provide scaffolding to help 
students automate aspects of each task 
individually before expecting them to combine 
both in successful programs. 

 
Taken together, using an established 

framework, such as constructive alignment, to 
design and analyze a curriculum, and utilizing 
cognitive load theory to help reduce extraneous 
cognitive load while being intentional about 
inclusion of germane cognitive load, should 
help instructional designers create learning 
environments in which students are able to 
achieve learning goals. In some cases, intended 
goals may have to be adjusted to account for the 
finite limitations of working memory capacity: 
it is likely not feasible, in the span of a single 
semester, to expect students with no 
programming experience to learn the syntax and 
grammar of a new language and higher level 
concepts associated with a paradigm like OOP, 
and be able to switch between abstraction layers 
in the fluid manner necessary to solving 
complex problems with programs. What this 
suggests is that closer coordination is needed 
across courses in a curriculum so that goals of 
one become background knowledge of 
subsequent courses, resulting in successful 
achievement of program learning goals by the 
time of graduation. 

 
References 

 
1. U.S. White House. Computer Science 

For All. whitehouse.gov. Jan. 30–2016. 
URL: https://www.whitehouse.gov/blog/ 
2016/01/30/computer-science-all (visited 
on 02/01/2016). 

 
2. code.org. Every child deserves 

opportunity. Code.org. 2016. URL: 
https://code.org/ (visited on 02/01/2016). 

 
3. Lauren Rich, Heather Perry, and Mark 

Guzdial. “A CS1 Course Designed to 
Address Interests of Women”. In: 
Proceedings of the 35th SIGCSE 
Technical Symposium on Computer 
Science Education.   SIGCSE ’04.  New 

York, NY, USA: ACM, 2004, pp. 190–
194. DOI: 10.1145/971300. 971370. 

 
4. Andrea Forte and Mark Guzdial. 

“Motivation and nonmajors in computer 
science: identifying discrete audiences 
for introductory courses”. In: Education, 
IEEE Transactions on 48.2 (2005), pp. 
248–253. 

 
5. Mark Guzdial and Andrea Forte. 

“Design process for a non-majors 
computing course”. In: ACM SIGCSE 
Bulletin. Vol. 37. ACM, 2005, pp. 361–
365. 

 
6. Kenneth Reid and David Reeping. “A 

classification scheme for “introduction 
to engineering” courses: defining first-
year courses based on descriptions, 
outcomes, and assessment”. In: 
American Society for Engineering 
Education Annual Conference & 
Exposition. Indianapolis, IN (1-11). 
Washington DC: American Society for 
Engineering Education. 2014. 

 
7. National Academy of Engineering NAE. 

Educating the Engineer of 2020: visions 
of engineering in the new century. 
Washington, DC: National Academies 
Press, 2004. 

 
8. Douglas C. Engelbart. “Augmenting 

human intellect: a conceptual 
framework”. In: PACKER, Randall and 
JORDAN, Ken. Multimedia. From 
Wagner to Virtual Reality. New York: 
WW Norton & Company (1962), pp. 64–
90. 

 
9. Alan C. Kay. “The Early History of 

Smalltalk”. In: ed. by Thomas J. Bergin 
Jr. and Richard G. Gibson Jr. New York, 
NY, USA: ACM, 1996, pp. 511–598. 

 
10. Seymour Papert. Mindstorms: Children, 

computers, and powerful ideas. Basic 
Books, Inc., 1980. 

https://www.whitehouse.gov/blog/%202016/01/30/computer-science-all
https://www.whitehouse.gov/blog/%202016/01/30/computer-science-all
https://code.org/
http://dx.doi.org/10.1145/971300.971370


54  COMPUTERS IN EDUCATION JOURNAL 

11. Michael McCracken et al. “A Multi-
national, Multi-institutional Study of 
Assessment of Programming Skills of 
First-year CS Students”. In: SIGCSE 
Bull. 33.4 (Dec. 2001), pp. 125–180. 
DOI: 10.1145/572139. 572181. 

 
12. Michael  Kölling  “The problem of 

teaching object-oriented programming”. 
In: Journal of Object Oriented 
Programming 11.8 (1999), pp. 8–15. 

 
13. Arnold Pears et al. “A survey of 

literature on the teaching of introductory 
programming”. In: ACM SIGCSE 
Bulletin 39.4 (2007), pp. 204–223. 

 
14. Anthony Robins, Janet Rountree, and 

Nathan Rountree. “Learning and 
teaching programming: A review and 
discussion”. In: Computer Science 
Education 13.2 (2003), pp. 137–172. 

 
15. Leah H Jamieson and Jack R Lohmann. 

“Creating a Culture for Scholarly and 
Systematic Innovation in Engineering 
Education: Ensuring US engineering has 
the right people with the right talent for a 
global society”. In: American Society of 
Engineering Educators (ASEE) (2009). 

 
16. James W Pellegrino. “Rethinking and 

redesigning curriculum, instruction and 
assessment: What contemporary 
research and theory suggests”. In: 
commissioned by the National Center on 
Education and the Economy for the New 
Commission on the Skills of the 
American Workforce (2006). 

 
17. Richard M. Felder and Rebecca Brent. 

“Designing and teaching courses to 
satisfy the ABET engineering criteria”. 
In: JOURNAL OF ENGINEERING 
EDUCATION-WASHINGTON- 92.1 
(2003), pp. 7–26. 

 
 
 

18. John Biggs. “Enhancing teaching 
through constructive alignment”. In: 
Higher Education 32.3 (Oct. 1996), pp. 
347–364. DOI: 10.1007/BF00138871. 

 
19. Frances Bailie et al. “Objects First - 

Does It Work?” In: J. Comput. Sci. Coll. 
19.2 (Dec. 2003), pp. 303–305. 

 
20. Sally H. Moritz et al. “From Objects-

first to Design-first with Multimedia and 
Intelligent Tutoring”. In: Proceedings of 
the 10th Annual SIGCSE Conference on 
Innovation and Technology in Computer 
Science Education. ITiCSE ’05. New 
York, NY, USA: ACM, 2005, pp. 99–
103. DOI: 10.1145/1067445.1067475. 

 
21. Stuart Reges. “Back to Basics in CS1 

and CS2”. In: Proceedings of the 37th 
SIGCSE Technical Symposium on 
Computer Science Education. SIGCSE 
’06. New York, NY, USA: ACM, 2006, 
pp. 293–297. DOI:10.1145/1121341. 
1121432. 

 
22. Michael H. Goldwasser and David 

Letscher. “Teaching an Object-oriented 
CS1 -: With Python”. In: Proceedings of 
the 13th Annual Conference on 
Innovation and Technology in Computer 
Science Education. ITiCSE ’08. New 
York, NY, USA: ACM, 2008, pp. 42–46. 
DOI: 10.1145/1384271.1384285. 

 
23. Theodora Koulouri, Stanislao Lauria, 

and Robert D. Macredie. “Teaching 
introductory programming: a 
quantitative evaluation of different 
approaches”. In: ACM Transactions on 
Computing Education (TOCE) 14.4 
(2014), p. 26. 

 
24. Laurie Williams and Richard L. 

Upchurch. “In support of student pair-
programming”. In: ACM SIGCSE 
Bulletin. Vol. 33. ACM, 2001, pp. 327–
331. 

 

http://dx.doi.org/10.1145/572139.572181
http://dx.doi.org/10.1007/BF00138871
http://dx.doi.org/10.1145/1067445.1067475
http://dx.doi.org/10.1145/1121341.1121432
http://dx.doi.org/10.1145/1121341.1121432
http://dx.doi.org/10.1145/1384271.1384285


COMPUTERS IN EDUCATION JOURNAL  55 

25. Charlie McDowell et al. “The effects of 
pair-programming on performance in an 
introductory programming course”. In: 
ACM SIGCSE Bulletin. Vol. 34. ACM, 
2002, pp. 38–42. 

 
26. Lynda Thomas, Mark Ratcliffe, and Ann 

Robertson. “Code Warriors and Code-a-
phobes: A Study in Attitude and Pair 
Programming”. In: Proceedings of the 
34th SIGCSE Technical Symposium on 
Computer Science Education. SIGCSE 
’03.  New  York,  NY,  USA:   ACM, 
2003, pp. 363–367. DOI: 10.1145/ 
611892. 612007. 

 
27. Jan Chong and T. Hurlbutt. “The Social 

Dynamics of Pair Programming”. In: 
29th International Conference on 
Software Engineering, 2007. ICSE 2007. 
29th International Conference on 
Software Engineering, 2007. ICSE 2007. 
May 2007, pp. 354–363. DOI: 
10.1109/ICSE.2007. 87. 

 
28. N. Salleh, E. Mendes, and John Grundy. 

“Empirical Studies of Pair Programming 
for CS/SE Teaching in Higher 
Education: A Systematic Literature 
Review”. In: IEEE Transactions on 
Software Engineering 37.4 (July 2011), 
pp. 509–525. DOI: 10.1109/TSE.2010. 
59. 

 
29. Jacob L. Bishop and Matthew A. 

Verleger. “The Flipped Classroom: A 
Survey of the Research”. In: ASEE 
Annual Conference & Exposition. 
Atlanta, GA, June 2013. 

 
30. Joshua DeSantis et al. “Do Students 

Learn More From a Flip? An 
Exploration of the Efficacy of Flipped 
and Traditional Lessons”. In: Journal of 
Interactive Learning Research 26.1 
(2015), pp. 39–63. 

 
 
 

31. John D Bransford, Ann L Brown, 
Rodney R Cocking, et al. How people 
learn. Washington, DC: National 
Academy Press, 2000. 

 
32. Susan A Ambrose et al. “Chapter 4: How 

Do Students Develop Mastery?” In: How 
learning works: Seven research-based 
principles for smart teaching. John 
Wiley & Sons, 2010, pp. 91–120. 

 
33. TA Litzinger et al. “A Cognitive Study 

of Problem Solving in Statics”. In: 
Journal of Engineering Education 99.4 
(2010), pp. 337–337. 

 
34. RA Streveler et al. “Learning Conceptual 

Knowledge in the Engineering Sciences: 
Overview and Future Research 
Directions”. In: Journal of Engineering 
Education 97.3 (2008), pp. 279–294. 

 
35. Carli D Flynn, Cliff I Davidson, and 

Sharon Dotger. “Engineering Student 
Misconceptions about Rate and 
Accumulation Processes”. In: ASEE 
Zone I Conference. Bridgeport, CT, 
2014. 

 
36. James D. Slotta and Michelene T. H. 

Chi. “Helping Students Understand 
Challenging Topics in Science Through 
Ontology Training”. In: Cognition and 
Instruction 24.2 (June 1, 2006), pp. 261–
289. DOI: 10.1207/s1532690xci2402_3. 

 
37. Bracha Kramarski and Zemira R. 

Mevarech. “Cognitive-metacognitive 
training within a problem-solving based 
Logo environment”. In: British Journal 
of Educational Psychology 67.4 (1997), 
pp. 425–445. 

 
38. David Reed. “Incorporating Problem-

solving Patterns in CS1”. In: 
Proceedings of the Twenty-ninth 
SIGCSE Technical Symposium on 
Computer Science Education.    SIGCSE  

 

http://dx.doi.org/10.1145/611892.612007
http://dx.doi.org/10.1145/611892.612007
http://dx.doi.org/10.1109/ICSE.2007.87
http://dx.doi.org/10.1109/TSE.2010.59
http://dx.doi.org/10.1109/TSE.2010.59
http://dx.doi.org/10.1207/s1532690xci2402_3


56  COMPUTERS IN EDUCATION JOURNAL 

’98. New York, NY, USA: ACM, 1998, 
pp. 6–9. DOI: 10.1145/273133.273137. 

 
39. Orna Muller and Bruria Haberman. 

“Supporting abstraction processes in 
problem solving through pattern-
oriented instruction”. In: Computer 
Science Education 18.3 (Sept. 1, 2008), 
pp. 187–212. DOI: 10.1080/08993400 
802332548. 

 
40. J. Philip East et al. “Pattern-based 

programming instruction”. In: 
Proceedings of the ASEE Annual 
Conference and Exposition, Washington 
DC. 1996. 

 
41. Orna Muller. “Pattern oriented 

instruction and the enhancement of 
analogical reasoning”. In: Proceedings of 
the first international workshop on 
Computing education research. ACM, 
2005, pp. 57–67. 

 
42. Eugene Wallingford. “Toward a First 

Course Based on Object-oriented 
Patterns”. In: Proceedings of the Twenty-
seventh SIGCSE Technical Symposium 
on Computer Science Education. 
SIGCSE ’96. New York, NY, USA: 
ACM, 1996, pp. 27–31. DOI: 
10.1145/236452.236485. 

 
43. Eric S. Raymond. The art of Unix 

programming. Addison-Wesley 
Professional, 2003. 

 
44. Matthias Felleisen et al. “A Functional 

I/O System or, Fun for Freshman Kids”. 
In: Proceedings of the 14th ACM 
SIGPLAN International Conference on 
Functional Programming. ICFP ’09. 
New York, NY, USA: ACM, 2009, pp. 
47–58. DOI: 10.1145/1596550.1596561. 

 
45. Marcus Crestani and Michael Sperber. 

“Experience Report: Growing 
Programming Languages for Beginning 
Students”. In: Proceedings of the 15th 

ACM SIGPLAN International 
Conference on Functional 
Programming. ICFP ’10. New York, 
NY, USA: ACM, 2010, pp. 229–234. 
DOI: 10.1145/1863543. 1863576. 

 
46. Tamar Vilner, Ela Zur, and Judith Gal-

Ezer. “Fundamental Concepts of CS1: 
Procedural vs. Object Oriented Paradigm 
- a Case Study”. In: Proceedings of the 
12th Annual SIGCSE Conference on 
Innovation and Technology in Computer 
Science Education. ITiCSE ’07. New 
York, NY, USA: ACM, 2007, pp. 171–
175. DOI: 10.1145/1268784.1268835. 

 
47. Fred Paas, Alexander Renkl, and John 

Sweller. “Cognitive load theory and 
instructional design: Recent 
developments”. In: Educational 
psychologist 38.1 (2003), pp. 1–4. 

 
48. Michal Armoni. “On Teaching 

Abstraction in Computer Science to 
Novices.” In: Journal of Computers in 
Mathematics and Science Teaching 32.3 
(2013), pp. 265–284. 

 
49. Mitchel Resnick et al. “Scratch: 

Programming for All”. In: Commun. 
ACM 52.11 (Nov. 2009), pp. 60–67. 
DOI: 10.1145/1592761.1592779. 

 
50. Stephen Cooper, Wanda Dann, and 

Randy Pausch. “Using animated 3d 
graphics to prepare novices for CS1”. In: 
Computer Science Education 13.1 
(2003), pp. 3–30. 

 
51. Ben A. Calloni, Donald J. Bagert, and H. 

Paul Haiduk. “Iconic Programming 
Proves Effective for Teaching the First 
Year Programming Sequence”. In: 
Proceedings of the Twenty-eighth 
SIGCSE Technical Symposium on 
Computer Science Education. SIGCSE 
’97. New York, NY, USA: ACM, 1997, 
pp. 262–266. DOI: 10.1145/268084. 
268189. 

http://dx.doi.org/10.1145/273133.273137
http://dx.doi.org/10.1080/08993400802332548
http://dx.doi.org/10.1080/08993400802332548
http://dx.doi.org/10.1145/236452.236485
http://dx.doi.org/10.1145/1596550.1596561
http://dx.doi.org/10.1145/1863543.1863576
http://dx.doi.org/10.1145/1268784.1268835
http://dx.doi.org/10.1145/1592761.1592779
http://dx.doi.org/10.1145/268084.268189
http://dx.doi.org/10.1145/268084.268189


COMPUTERS IN EDUCATION JOURNAL  57 

52. Christopher D. Hundhausen, Sean F. 
Farley, and Jonathan L. Brown. “Can 
direct manipulation lower the barriers to 
computer programming and promote 
transfer of training?: An experimental 
study”. In: ACM Transactions on 
Computer-Human Interaction (TOCHI) 
16.3 (2009), p. 13. 

 
53. Jason Snook et al. “Incorporation of a 3d 

interactive graphics programming 
language into an introductory 
engineering course”. In: age 10 (2005), 
p. 1. 

 
54. Vinod K Lohani et al. “Reformulating 

General Engineering and Biological 
Systems Engineering Programs at 
Virginia Tech”. In: Advances in 
Engineering Education 2.4 (2011), pp. 
1–30. 

 
55. Susan A Ambrose et al. How learning 

works: Seven research-based principles 
for smart teaching. John Wiley & Sons, 
2010. 

 
56. Raymond Lister. “On Blooming First 

Year Programming, and Its Blooming 
Assessment”. In: Proceedings of the 
Australasian Conference on Computing 
Education. ACSE ’00. New York, NY,  

 
57. USA: ACM, 2000, pp. 158–162. DOI: 

10.1145/359369.359393. 
 
58. Des Traynor and J. Paul Gibson. 

“Synthesis and Analysis of Automatic 
Assessment Methods in CS1: Generating 
Intelligent MCQs”. In: Proceedings of 
the 36th SIGCSE Technical Symposium 
on Computer Science Education. 
SIGCSE ’05. New York, NY, USA: 
ACM, 2005, pp. 495–499. DOI: 
10.1145/1047344. 1047502. 

 
59. Michelene T. H. Chi et al. “Self-

explanations: How students study and 
use examples in learning to solve 

problems”. In: Cognitive Science 13.2 
(Apr. 1, 1989), pp. 145–182. DOI 
10.1016/0364-0213(89)90002-5. 

 
60. Brenda Cheang et al. “On automated 

grading of programming assignments in 
an academic institution”. In: Computers 
& Education 41.2 (Sept. 2003), pp. 121–
131. DOI: 10.1016/S0360-
1315(03)00030-7. 

 
61. Raymond Lister. “Objectives and 

Objective Assessment in CS1”. In: 
Proceedings of the Thirty-second 
SIGCSE Technical Symposium on 
Computer Science Education. SIGCSE 
’01. New York, NY, USA: ACM, 2001, 
pp. 292–296. DOI: 10.1145/364447. 
364605. 

 
62. Judy Sheard et al. “Exploring 

Programming Assessment Instruments: 
A Classification Scheme for 
Examination Questions”. In: 
Proceedings of the Seventh International 
Workshop on Computing Education 
Research. ICER ’11. New York, NY, 
USA: ACM, 2011, pp. 33–38. DOI: 
10.1145/2016911.2016920. 

 
63. Petri Ihantola et al. “Review of Recent 

Systems for Automatic Assessment of 
Programming Assignments”. In: 
Proceedings of the 10th Koli Calling 
International Conference on Computing 
Education Research. Koli Calling ’10. 
New York, NY, USA: ACM, 2010, pp. 
86–93. DOI: 10.1145/1930464.1930480. 

64. Jens Bennedssen and Michael E. 
Caspersen. “Abstraction Ability As an 
Indicator of Success for Learning 
Computing Science?” In: Proceedings of 
the Fourth International Workshop on 
Computing Education Research. ICER 
’08. New York, NY, USA: ACM, 2008, 
pp. 15–26. DOI: 10.1145/1404520. 
1404523. 

 
 

http://dx.doi.org/10.1145/359369.359393
http://dx.doi.org/10.1145/1047344.1047502
http://dx.doi.org/10.1016/0364-0213(89)90002-5
http://dx.doi.org/10.1016/S0360-1315(03)00030-7
http://dx.doi.org/10.1016/S0360-1315(03)00030-7
http://dx.doi.org/10.1145/364447.364605
http://dx.doi.org/10.1145/364447.364605
http://dx.doi.org/10.1145/2016911.2016920
http://dx.doi.org/10.1145/1930464.1930480
http://dx.doi.org/10.1145/1404520.1404523
http://dx.doi.org/10.1145/1404520.1404523


58  COMPUTERS IN EDUCATION JOURNAL 

65. Herbert A. Simon. “The role of attention 
in cognition”. In: The Brain, Cognition, 
and Education. Ed. by Sarah L. 
Friedman, Kenneth A. Klivington, and 
Rita W. Peterson. New York: Academic 
Press, 1986, pp. 105–115. 

 
66. Lynn Andrea Stein. “Challenging the 

computational metaphor: Implications 
for how we think”. In: Cybernetics & 
Systems 30.6 (1999), pp. 473–507. 

 
Biographical   Information 

 
Darren Maczka is a Ph.D. student in 

Engineering Education at Virginia Tech. His 
background is in control systems engineering 
and information systems design and he received 
his B.S. in Computer Systems Engineering from 
The University of Massachusetts at Amherst. 

 
Jacob Grohs is an Assistant Professor in 

Engineering Education at Virginia Tech with 
Affiliate Faculty status in Biomedical 
Engineering and Mechanics and the Learning 
Sciences and Technologies at Virginia Tech. He 
holds degrees in Engineering Mechanics (BS, 
MS) and in Educational Psychology (MAEd, 
Ph.D.). 

 
 


	Leveraging   Historical   Ties   between   Cognitive   Science and   Computer   Science   to   Guide   Programming   Education
	Coding  for  Everyone
	Methods
	Current  State  of  Research
	Trends  in  Programming
	Education  Research
	A  Hypothetical  Case  Study
	Assessment
	Considerations  and  Limitations
	Discussion  and  Future  Work
	Conclusion
	References


