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Abstract 

 
Computer organization and architecture are 

core courses in the computing curricula. 
Providing a good applied experience in these 
courses is crucial for all computing disciplines. 
In this paper we present the design of an 
instruction set architecture to address the need 
of providing a simple but realistic hands-on 
experience on the hardware level to computer 
organization and architecture students. The 
control unit is the most tedious part of any 
processor design. Our goal is to show students 
how they can build a complete pipelined 
processor in the lab with minimum cost using 
TTL chips. In this paper we continue our 
previous work and show two approaches to the 
design of the control unit. We hope that with 
this effort we provide students with a deep 
insight on processor design that cannot be 
provided with theory or simulation. 
 

Introduction 
 

 It is very important to combine theory and 
practice when it comes to teaching computer 
organization. There are many simplified 
architectures designed for pedagogical purposes. 
The Essentials of Computer Organization and 
Architecture by Null [1] introduces assembly 
language through MARIE. MARIE has a very 
simplistic instruction set and datapath. Hennessy 
and Patterson’s Computer Organization and 
design [2] use MIPS as the example for 
assembly language programming. Some 
instruction set architectures are designed with 
the goal of prototyping using FPGAs [3] while 
others are based on Hardware description 
Languages (HDL) [4, 5]. Though, most of them 
are designed as simulators, some examples are 
Ant32 [6] and MARS [7]. Yunten Labs [8] 
provide an architectural kit called the Computer 

Architecture Lab (CAL) to help students build a 
simple processor. However, this system is a 
very simple 4-bit architecture with a handful of 
instructions.  

 
Our goal was to design an instruction set 

architecture that provide a rich experience and a 
clear understanding of the details of instruction 
execution at the hardware level. Students can 
build their own processors from scratch and 
follow the different stages of instruction 
execution starting from the fetching, decoding, 
executing and writing back to memory. 

 
DLX is a simplified Reduced Instruction Set 

Architecture (RISC) architecture that is 
designed mainly for pedagogical purposes. In 
[9], we took DLX one step further, and reduced 
its instruction set based on the Standard 
Performance Evaluation Corporation (SPEC) 
benchmarks [2] to reach our proposed (HRISC) 
instruction set. We presented the table of events 
of HRISC that is considered as the 
documentation that shows the steps of execution 
of the different HRISC instructions in the 
pipeline. We then presented a complete design 
of HRISC and showed how to build it in a lab 
using off the shelf TTL chips. The control unit 
is the most difficult part in processor design. In 
this paper, we provide the details of the design 
of HRISC control unit using two approaches. 
The first is a microcoded control unit while the 
other is a hardwired control unit. 
 

HRISC  Instruction  architecture 
 
HRISC has two instruction formats: an 
immediate type and a register to register type. 
They are shown in Figure 1. There are 17 
instructions in HRISC instruction set as shown 
in Table 1. 
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Figure 1: HRISC Instruction Format.  

 
 

Table 1: HRISC Instruction Set. 
 

 
 

Microcoded  Control  Unit 
 

HRISC can be divided into five basic 
execution steps, where each step becomes a pipe 
stage:  

 
1. IF - instruction fetch  
2. ID - instruction decode and register fetch  
3. EX - execution and effective address 

calculation  
4. MEM - memory access  
5. WB - write back  
 

Figure 2 shows the block diagram of the 
pipelined HRISC. It is divided into the five 
stages to show clearly the flow of instructions in 
the pipeline. Every stage contains its 
microprogram PROM which contains the 
corresponding microinstructions. These 
microinstructions output the control lines used 
to control the flow in this stage.  Operations 
performed in each stage are drawn horizontally 
on the same level to indicate that they are 
actually performed at the same time. For 
example IR1 and PC1 are at the same level in 
the IF stage. In the ID stage IR2, A, B, and PC2 
are at the same level. The same thing applies for 
IR3, OUT1, COND, MAR and MDR1 in the EX 
stage. A more detailed block diagram can be 
found in [9]. 

I-type (immediate)  

31         26 25         21 20         16 15                                               0

 
This section shows the microinstruction 

format of each PROM, and the possible entries 
for each field.  

 
PROM ID  

• b1,b2   10 BEQZ 
   11  BNEQZ 
   01  JR, JALR 
   00  otherwise 

PROM EX  
• EB   0  ADD, SUB, AND, 

   XOR, SHIFT, SET 
   1 ADDI, LOAD,  

    STORE, LHI  
   x  O.W. 
• New  1 LHI 
   0 O.W. 
• SETF  0 SEQ 
   1 SLT, SGT 
   x O.W. 
• SR  1 SRL 
   0 O.W. 
• SL  1 SLL 
   0 O.W. 
• S3-S0   0001  ADD, ADDI, LHI 
   0110  SUB,SEQ,SLT, SGT 
   1011  AND 
   0110  XOR 
   x  O.W. 
• Cn   0 SLT 
   1 ADD, ADDI, LHI, 

    SUB, SEQ; SGT 
 

Control   
Branch  BEQZ, BNEZ 

Jump  JR , JALR 
Arithmetic/logical   
Add  ADD,ADDI 
Subtract  SUB 
And Logical  AND 
Exclusive Or  XOR 
Shift Right Logical  SRL  

Shift Left Logical  SLL  
Load High Immediate  LHI  

Set  SEQ, SLT, SGT 

Data Transfer   
Load  LW 
Store  SW 

op rs rd immediate/offset

R-type (register-to-register)  

op rs rt rd 

31         26 25         21 20         16 15        11 10                               0

unused
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   x O.W. 
• M   0 ADD, ADDI, LHI, 

   SUB, SEQ, SLT,  
   SGT 

   1 AND, XOR 
   x O.W. 
• OUTI  A op B  1 ADD, ADDI, LHI, 

   SUB, AND, XOR 
    0 O.W. 
• OUT3  A op B  1 SET 
   0 O.W. 
 

PROM MEM  
• OUT2  OUT 1  1 ALU 
   0 O.W. 
• OUT2 OUT3 1  SET 
   0 O.W. 
• MDR2  DM [MAR] 1 LOAD 
    0 O.W. 
• DM [MAR]  MDR1 1 STORE 
    0 O.W. 

PROM WB 
• RD  OUT2  1 ALU, SET 
    0 O.W. 
• R31 LINK3  1 JALR 
    0 O.W. 
• RD MDR2  1 LOAD 
    0 O.W. 

Hardwired  Control  Unit 
 

 Since the PROMS happen to have most of 
their entries as don’t cares, also they have very 
few control lines, therefore it is better to 
hardwire the control unit.  This would lead to 
less cost and better speed. The following section 
describes how the HRISC control unit could be 
hardwired.  

Each instruction has a 6-bit opcode, they are 
named a,b,c,d,e and f. To facilitate the job, the 
instruction's opcode can be assigned values such 
that each bit of the opcode decides which group 
the instruction belongs to. That is, bit "a" decides 
whether the instruction is R-type or I-type, "b" decides 
whether it is a memory or a control instruction, bits "c” 
and "d” differentiate between different memory/control 
instructions, "e" decides whether it is a shift instruction 
from the ALU R-type instructions, while "f" differentiates 
between ALU and SET instructions, as follows:  

  

 
 

 
 
 
 
 
 
 
 
 

The following Table shows the opcode bit 
configuration of the instructions. 

 
 a b c d e f 
LW 1 0 0 0 X X 
SW 1 0 0 1 X X 
LHI 1 0 1 0 X X 
ADDI 1 0 1 1 X X 
ADD 0 X X X 1 0 
SUB 0 X X X 1 0 
AND 0 X X X 1 0 
XOR 0 X X X 1 0 
SRL 0 X X X 0 0 
SLL 0 X X X 0 0 
SEQ 0 X X X 1 1 
SLT 0 X X X 1 1 
SGT 0 X X X 1 1 
BEQZ 1 1 0 0 X X 
BNEQZ 1 1 0 1 X X 
JR 1 1 1 0 X X 
JALR 1 1 1 1 X X 

 
Hardwiring  PROM  ID  
 

PROM ID has two control lines b1 and b2, 
they can be hardwired as follows:  

 

c'
b1

c
d

a
b

b2 

 
 

Hardwiring  PROM  EX  
 

PROM EX has 13 control lines. Since the R-
type instruction format has 11 unused bits, then 
these bits could be used as control bits for the R- 

opcode  
a 0   R-type 

1   I-type 
b 0   memory 

1   control 
e 0   shift 

1   non-shift R-type 

f 0  R-type ALU 
1   R-type SET 
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type instructions. The 11 control lines that are 
put in the R-type instruction are: S3-S0, Cn, M, 
OUT1  A OP B, OUT3  A OP B, SETF, 
SR, SL. Then the R- type instructions could be 
assigned the following values:  
 
 ADD 0xxx10  rs  rt  rd  00011010x00  

SUB oxxx10  rs  rt  rd  01101010x00  

AND 0xxx10  rs  rt  rd  1011x110x00  

XOR 0xxx10  rs  rt  rd  0110x110x00  

SLR 0xxx00  rs  rt  rd  xxxxxx00x01  

SLL 0xxx00  rs  rt  rd  xxxxxx00x10  

SEQ 0xxx11  rs  rt  rd  01101001000  

SLT 0xxx11  rs  rt  rd  01100001100  

SGT 0xxx11  rs  rt  rd  01101001100  
 

As for the I-type instructions a decoder is used 
to decode bits b, c and d of the opcode.  

 
The PROM is hardwired as follows:  
 

S3 (IR2)

S3 (ALU)

S2 (IR2)

S2 (ALU)

S1 (IR2)
S1 (ALU)a'

a'

a'

 

X

S0(ALU)

a'

a'

a'

a'

a'

S0 (IR2)

Cn (IR2)

OUT1 <- A op B

OUT1 <- A op B (IR2)

M (IR2)

Cn (ALU)

M (ALU)

EB

a

a

b'

b'

b'

c

c

d

NEW

 
 
 
 

Hardwiring  PROM  MEM 
 
   PROM MEM has 4 control lines. They are 
hardwired as follows: 
 

a'
f '

R-ALU

X
OUT2 <- OUT1

a '
e
f

OUT2 <- OUT3

d '

MDR2 <- DM[MAR]

a

a

b '

b '

c '

c '

d

DM[MAR] <- MDR1

 
 
 Hardwiring PROM WB 
 

PROM WB has 3 control lines. They can be 
hardwired as follows: 

d '

RD <- MDR2

a

a
b '

b 

c '

c 
d

R31 <- LINK3

X
a '

RD <- OUT2

 
 

CONCLUSION 
 

Hands-on education is usually the most 
effective. The ability to build processors using 
hardware gives students an invaluable 
experience. Although some may find it more 
time consuming in comparison to simulation, 
our experience shows that the hours the students 
spent building their own processor really pays 
off. Students pay attention to the minute details 
and hence end up with a solid understanding of 
processor design. Our goal is to provide an 
instruction set architecture that is simple enough 
so students can build it physically using 
hardware. Yet realistic enough so it gives 
insight on how real processors work. In this 
paper we continue our previous work and 
provide details of the most complex part of any 
processor design: the control unit. We showed 
two implementations for the control unit; one is 
microcoded and the other is hardwired.  
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Figure 2: Pipelined HRISC Block Diagram. 
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