
USE OF VERSION CONTROL SOFTWARE TO MANAGE
A COMPUTER ARCHITECTURE DESIGN PROJECT

 BY STUDENT TEAMS

 Archana Chidanandan Laurence D. Merkle
Computer Science and Software Engineering Computer Science and Engineering

 Rose-Hulman Institute of Technology Wright State University
 Terre Haute, IN 47803 Dayton, OH 45435

Abstract

In this paper, we describe the role of version
control software in managing projects involving
teams of three to four students in the Computer
Architecture course. In the course, students
learn design principles of computer architecture.
They demonstrate and deepen their
understanding by designing and implementing
their own “miniscule instruction set” processor.
They use Electronic Design Automation (EDA)
tools such as Cadence, NCSim, and Xilinx ISE
Foundation to implement their design, and they
are strongly encouraged to use Verilog HDL to
implement their hardware components and
datapath. In this offering of the course, we
required students to use Subversion (SVN) to
manage their design files and surveyed them to
see how the use of SVN helped them in
managing their projects. From their responses,
we conclude that the use of SVN greatly
facilitated sharing of design files and version
control. We believe that the use of this version
control software can be extended to other
hardware design courses.

Introduction

The use of version control software has often

been advocated to manage software engineering
projects. It has also been adopted by a number
of Computer Science and Software Engineering
instructors to assist their students to manage
team project materials as explained in [1,2].
These projects typically involve two or more
people working together or software that is
distributed across many files. Version control
software serves a number of purposes in
managing such work. For example, it simplifies

how code is shared between members of the
team and it provides for a mechanism to
organize and save multiple versions of the
software.

In our Computer Architecture I course,

students work in teams to design and implement
a processor. In one project, students are
provided the design and code of a modified
version of the IJVM (Integer Java Virtual
Machine) architecture [3]. They are then
required to complete the design by adding the
components to support interrupt-based I/O. In
another project (henceforth called the term
project), students are required to design their
own “miniscule” instruction set processor [4]
and then model it using EDA software. They are
also encouraged to implement it on a Field
Programmable Gate Array (FPGA) board.

In both projects, students are required to work

in teams of between three and five students.
This requires them to share design files and
implementation files with each other. As the
projects are quite extensive and the work is done
over multiple weeks, the students also have to
learn to manage all their files while working
with a team.

In the Fall 2007 offering of this course, we

decided to have students use version control
software to manage their projects. We hoped
that this would solve some of the problems
students had encountered in the past, regarding
sharing of code and obtaining older (and
possibly correct) versions of their design files.

In this paper, we begin by explaining our

motivation in encouraging students to use

38 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATION JOURNAL 39

version control software. Following that, we
discuss how the software was used in the course
by our students. In the next section, we describe
how we administered our surveys and then
present the responses to our survey questions.
We next describe our conclusions obtained from
the responses and finally describe how the use
of the version control software can be extended
to other similar projects.

Why use version control software?

In the Computer Architecture I class, students

work on projects in teams. The projects span a
number of weeks and in some cases almost ten
weeks. Students form teams consisting of three
to five members. The projects require students
to design an Instruction Set Architecture, the
register transfer language, datapath and control
units, and all necessary components. They
finally implement the design using Cadence and
Xilinx EDA software tools. Students use the
schematic capture tool and specify modules in
Verilog HDL. Each milestone has a number of
deliverables – sometimes design documents, and
in other cases implementation files. The final
implementation phase can extend anywhere
from two to four weeks. The instructors may
also provide students with some parts of the
design for either optional or mandatory
incorporation into the students’ design.

In the past offerings of the course, we have
observed the following challenges:

• Ensuring code developed by different team

members is interfaced correctly
• Avoiding duplicated effort in code

development
• Efficient sharing of code with teammates
• Informing teammates about newer versions

of code that they need to integrate with their
own code

• Obtaining help from the instructor on code-
related issues

• Integrating changes to instructor-provided
code that students had already modified and
integrated into their project.

The instructors conjecture that some of these
issues would be alleviated by using version
control software to manage the various
documents and the software components that the
students worked on over the course of a project.
Version control software such as CVS [5] and
SVN [6] are the most popular programs
currently used. In our department, we are
currently using SVN to manage our courses and
projects. Henceforth, in this paper, when we
refer to version control software we are
referring to SVN. However, most of our
observations are probably valid for other version
control software such as CVS.

Version Control Software in the Computer

Architecture project

Here we list the various activities that are

performed to manage the project:

a. An SVN repository is created for each
project team by the instructor.

b. If the instructor intends to provide any code
to the students, the repositories are
populated with the code.

c. Students are encouraged to store all the
Verilog files (design and test) and other
Xilinx source files in the repository.

d. Each member of the team could work on his
or her part of the project and periodically
submit the new files or modifications to
existing files back to the repository. Team
members must also periodically update their
repositories to obtain the new files and
modifications submitted by their team
members.

e. If a team requires an instructor’s assistance
with a code related problem, the team must
first commit the latest version (or the
problematic version) of their files to the
repository. Instead of having to receive all
the required design files by e-mail or on a
thumb drive, the instructor can check out the
appropriate version of the files from the
team’s repository to his/her own computer
and examine the code and offer suggestions

to students. The team and instructor need not
even be in the same room for the team to
obtain help from the instructor. For example,
they could communicate via an instant
messaging service.

f. Similarly, if the instructor wants to provide
updated versions of files when the team has
already integrated files into their design, the
instructor can commit the files to the student
folders and the SVN tool can help the team
identify the difference between two versions
of the file and thus select the portions that
need to be retained and others that may be
discarded.

g. Students also commit a final version of their
files to the SVN repository where it
becomes available for instructors or
assistants to grade.

Figures 6 and 7 provide examples of how the

TortoiseSVN graphical user-interface can be
used to perform some of the operations
described in this section. Also, described in
Figure 8 is how to set up an SVN server on a
local PC, in case a centralized server is not
available. This procedure may be used to create
an SVN server on a Windows machine. An
SVN server can be installed similarly on a
Linux machine.

Assessing the use of the version
control software for the project

Pre- and post-surveys were conducted to

determine the effects of the version control
software in assisting students while working
with relatively large projects. In the pre-survey,
students were asked questions related to how
they would manage their project if they did not
use version control software. They were also
asked a series of questions to determine how
they expected the use of version control
software to assist them in coordinating their
team work and also manage the various versions
of code they would be writing to implement
their design. In the post-survey, administered at
the end of the term after students had been using
the version control software for a significant
period of time, the students were asked to

answer questions about their experiences with
the software. The questions and a summary of
the answers are provided in the following
section.

We surveyed students from three sections of

the Computer Architecture I course in the fall
term. We had a total of 52 students respond to
the pre-survey and 50 students respond to the
post-survey. The students were sophomore and
junior computer science, computer engineering,
and software engineering majors. The course is
required for these majors. A substantial majority
of the students had experience using the version
control software in at least one previous course.

Responses to the two surveys

Students were asked to respond to the first set

of questions in the pre-survey assuming that
they would not have access to version control
software. This set of questions and
representative responses follow.

1. Please describe how you would ensure that
code developed by different team members
interfaced correctly.

• The use of a common location to store the

files including ftp sites, or using e-mail to
periodically email modified files to all
members of the team.

• Have meetings frequently to discuss each
person’s responsibility and contribution,
allowing for individuals to work on their
own.

• Wait for all team members to complete
before system testing.

• Have only one member work at a time.
• Designing to the last detail to ensure that all

team members are aware of the naming
conventions and the inputs and outputs of all
modules are clearly defined.

• Use some messaging software to keep in
contact with any team members that are
concurrently working.

• Do all the work on one computer with one
person managing all the files and all team

40 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATION JOURNAL 41

members meeting frequently to help the
person complete the work on his/her
computer.

2. Please describe how you would avoid
duplicated effort in code development.

• Break down the design into smaller

modules, create a list of modules to be
created and each team member would have
to know exactly what their responsibility is
in terms of modules to develop.

• Document all the code.
• Constant communication amongst team

members to update each other on their
progress (using e-mail or an instant
messaging system).

• Impossible to prevent duplication of work
unless the team members have prior
experience working with each other.

• Create a schedule and specify when each
module is due and require team member to
keep to the schedule.

• Have only one member of the team manage
all the code.

3. Please describe how you would share code
with your teammates.

• Use a portable hard-drive to copy code to

and share with team mates.
• E-mail the code to each team member when

done.
• Develop the code [on] only one computer.
• Meet daily to coordinate and share code.
• Use some kind of version control software.

4. Please describe how you would inform your
teammates about newer versions of code that
you would like them to integrate with their
code.

• Email the code with descriptions on what

changes have been made and the
significance of the module to the project.

• Work together to ensure that every team
member is aware of everything occurring in

project.
• Daily team meetings to update files.

5. Please describe how you seek help from your
instructor on code-related issues.

• Email problematic code or files to instructor

with description.
• Use an instant messaging system to contact

the instructor.
• Visit his/her office.
• Use in-class project time and show the code

on student’s computer (after ensuring that
the student code is up to date).

6. Please describe how you would integrate
changes to instructor-provided code that you
had already modified and integrated into your
project.

• Look for the affected code in files and make
changes manually.

• Ensure that original files provided by
instructor are not modified and all additional
code is written in separate files. The new
code can then be integrated by simply
replacing the original files.

Students were asked to respond to a

corresponding set of questions in the post-
survey in light of their access to version control
software during the project. This set of
questions and representative responses follow.

1. Please describe how you feel the use of
version control software impacted each of the
following.

a. Your ability to share code with your
teammates efficiently and reliably.

• SVN was extremely helpful, because we

could all look at the same block of code at
the same time and test different things about
it simultaneously instead of all 4 of us
huddling around one computer and wasting
a lot of time.

• It worked most of the time. Sometimes there
were conflicts and you had to delete
everything to make it work because it said
there were too many differences or conflicts.

• Did not have to e-mail code or place on a
server.

• The comments section when committing a
file to the repository, allowed team-mates to
not just share files but also specify the
updates being made and highlighted the
areas that needed more work.

• The fact that there were 150 revisions for
one of the teams implies that the team did
not have to send 150 e-mails.

• Being able to retrieve older versions of files
was helpful.

b. Your instructor’s ability to answer your code-
related questions efficiently and effectively.

• When a question arose, [the] team could add

the problem code into their repo and the
instructor could check the code out on
his/her computer and respond pretty quickly.
Students did not have to go to the
Professor’s office and could get help even
when off-campus.

c. Your ability to integrate updates to instructor-
provided code.

• Once the instructor added the updates to the

team repositories, students only had to
update their local folder.

Figures 1 to 5 show the responses for

questions on both the pre- and post-surveys.

Application in Engineering Disciplines

In this section, we describe how the version
control software could be used in other
engineering disciplines. There are at least two
scenarios in which version control software
would be useful.

The first is in any programming course that is

taught (e.g. Matlab or Maple). Each student or

student team can be provided with a repository
on the central server. Any templates and sample
code that the instructor wants to provide the
students can be placed in each team’s repository
and students can checkout, modify and update
the program files and related documents in their
repositories. Instructors can checkout the files at
any time from each repository to grade them or
to provide feedback and assistance.

The second scenario is for a design course

especially one which requires students to work
in teams and maybe even across multiple terms.
Each team can be provided a repository and
students can upload their design documents to
the repository and thus share it with each other.
This will prevent one person having to manage
all the documents as would otherwise be the
case and any version of the document can be
retrieved at any time to see what changes have
been made. As stated earlier, all types of files
can be stored in the repository – Office files,
CAD design files, programming source files
(Matlab, C), text files, and image files.

In order to facilitate this, a faculty member

will have to perform the following actions:

a. Set up a server on a centralized machine that
will be up and running all the time (see steps
1-4 of Figure 8 for instructions on setting up
a server, and Section 6.2 on space and
bandwidth requirements). If a centralized
server is not available, individual teams can
also set up the server on their own machines.
However, the authors would not encourage
this procedure for persons using the software
for the first time.

b. Create a repository for each team [11] (e.g.
C:/svn/team01, C:/svn/team02, and so on).
See Figure 8, step 3.

c. Create a username and password for each

student as shown in Figure 8, Step 6. Note:
The “-c” option when creating user accounts
is to create a new password file, so use it
only when you are creating the first user for

42 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATION JOURNAL 43

a repository. Also, specify the appropriate
password file for each team by adding the
appropriate location in the Apache
configuration file, as follows:

<Location /svn/team01>
 #Specifiy path
 DAV svn
 SVNPath c:\svn\team01
 #Specify authentication
 Authtype Basic
 AuthName "Subversion Repository"
 AuthUserFile c:\passwd\passwords-1
 Require valid-user
</Location>

d. Let each student know their username and

password and also the location of their
repository (e.g. http://IP-address-of-server/
svn/team01).

e. Instruct students to install the SVN client.

They are then ready to use the repository.

f. The instructor should also install the SVN

client on his/her local machine to access
each repository. In order to have access to
each repository, the instructor will have to
add his/her username to each of the
password files as described earlier.

Conclusions

In this section, we discuss the responses of the

students and what can be inferred from them.
We also discuss what the instructor needs to do
to support and manage such a system.

Student responses

From the responses of the students, we can
conclude that the most beneficial aspect of using
the version control software is being able to
share code easily amongst members of the team.
94% of the students agreed on this point. It is
interesting to note that 98% of students
anticipated this to be the case before they
actually used the software.

Looking at the descriptive answers, it was
observed that students did not always divide
their work up properly beforehand. This meant
that there were times when more than one team
member was working on the same file
simultaneously. When it came time to commit
the files back to the repository, the version
control software would detect the conflicts and
the commit would fail. This is the desired
behavior, but students found it difficult to
resolve these conflicts and this led to frustration
with the software. Perhaps if the instructor were
able to demonstrate to the students using an
example of how to resolve conflicts then
students may not have similar problems in the
following terms.

Students were typically positive about being

able to obtain the latest versions of their
teammates’ code from the repository. A couple
of students noted how many revisions they had
committed to the repository, and this was an
indication of how many e-mails they would
have had to send each other with the modified
files in the absence of a version control system.

In the pre-survey, 81% of the students believed

that the version control software would make it
easier to get assistance from the instructor. After
working on the project for some time and
having had the need to obtain help from the
instructors, 94% of the students agreed that the
version control system facilitated getting help
from the instructor.

Students also agreed that there was less

duplication of code as the version control
software allowed them to detect it early by
reporting conflicts during attempted commit
operations. This possibly forced the students to
be more disciplined in their approach to division
of the work amongst the team members.

As one student wrote, if the version control

software was used correctly, then the repository
was very useful and made teamwork much more
efficient and smooth. Specifically, this meant
that each team member was conscientious about

http://ip-address-of-server/%20svn/team01
http://ip-address-of-server/%20svn/team01

committing their latest code to the repository,
writing meaningful and descriptive comments
during the commit, and updating their working
copy before committing new changes. In
addition, one could add that if the team planned
their implementation well and had clear naming
conventions for files and a clear division of
tasks then the version control software was even
more effective. In the absence of such planning,
the version control software detected the
problems early. While this may be a frustrating
experience, it is less frustrating than detecting
such problems late in the process, not to
mention being a valuable learning experience in
itself!

Impact on the instructor

From an instructor’s perspective, the concerns

are

a. Helping students learn to use the tool
b. Creating repositories for the teams and

populating them as required
c. Checking out entire projects of student

teams and navigating through their files
d. Maintaining a server to host the repositories

All of these are relatively straightforward

tasks. There are plenty of tutorials available for
the most popular version control software tools.
Most also have GUIs [7-9] that make the
process fairly intuitive. The learning curve is not
very steep and at Rose-Hulman the introductory
computer science courses require students to use
version control. Both “b” and “c” are also
relatively simple. For example, at Rose-Hulman,
our colleagues and system administrators have
written a number of scripts that allow us with
relative ease to create repositories for a list of
students IDs stored in a file. Similarly, there are
scripts to populate repositories and checkout
repositories. In [10], the authors describe how
instructors can use the version control system to
manage their own course material and how it
can enhance teaching.

In terms of the server requirements, each term
our department colleagues and we create an
average of 300 new student repositories for the
various courses being taught. For such a load,
the SVN server requirements include about
512MB of RAM, and a 100Mb bandwidth
network. Even with an average of 300
repositories, the I/O traffic is minimal and a
SATA is sufficient for disk access. A really
busy server would need several drives in a
striped RAID configuration to handle the disk
I/O. The disk subsystem would be the first
bottleneck, before RAM or CPU.

While we have used the version control

software for projects in the Computer
Architecture I course, it could be used easily by
teams of students working on any type of design
project – be it in civil engineering, mechanical
engineering or bio-medical engineering. The
version control software allows for all kinds of
files from programming files to text files to
design documents to be stored and retrieved as
needed, although it is more effective for plain
text files than for binary format files such as
Microsoft Office documents. It can support
large teams and large projects. In the words of
one of the students, “I couldn't think of a better
way to share code. Every time you log-in, you
update to the current version, commit when
[you’re] done and everyone is on the same
page!”

References

1. K. Reid and G.V. Wilson, “Learning by

Doing: Introducing Version Control as a
Way to Manage Student Assignments,” in
Proceedings of the 36th SIGCSE Technical
Symposium on Computer Science
Education, pages 272–260. ACM, ACM
Press, 2005.

2. K. T. Hartness, “Eclipse and CVS for group

projects,” in Proceedings of CCSC’06,
Consortium for Computing Sciences in
Colleges, 2006.

44 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATION JOURNAL 45

3. A.S. Tanenbaum, Structured Computer
Organization, 5th ed., Prentice Hall, 2006.

4. Archana Chidanandan, J.P. Mellor, and

Laurence D. Merkle, “Design and
Implementation of a Minuscule General
Purpose Processor in an Undergraduate
Computer Architecture Course,” in
Proceedings of the 2007 IEEE International
Conference on Microelectronic Systems
Education (MSE 2007).

5. P. Cederqvist, “CVS—concurrent versions

system,” http://ximbiot.com/cvs/manual/cvs-
1.11.22/cvs.html, 2006, (accessed
September 2008).

6. B. Collins-Sussman, B. W. Fitzpatrick, and

C. M Pilato, Version Control with
Subversion, O’Reilly, 2004.

7. http://tortoisesvn.tigris.org/ (accessed

September 2008).

8. http://scplugin.tigris.org/ (accessed

September 2008).

9. http://rapidsvn.tigris.org/ (accessed

September 2008).

10. Curtis Clifton, Lisa C. Kaczmarczyk, and

Michael Mrozek, “Subverting the
fundamentals sequence: Using version
control to enhance course management,” in
Proceedings of the 38th SIGCSE Technical
Symposium on Computer Science
Education, pages 86–90. ACM, ACM Press,
2007.

11. http://www.subversionary.org/howto/setting

-up-a-server-on-windows (accessed January
2009).

12. http://www.apache.org/dist/httpd/binar
ies/win32/ (accessed January 2009).

13. http://subversion.tigris.org/servlets/ProjectD

ocumentList?folderID=91 (accessed January
2009).

Biographical Information

Archana Chidanandan received a B.E. in

Electronics and Communications Engineering in
1997 from the College of Engineering, Anna
University, India. She also received the M.S.
and Ph. D. in Computer Engineering from the
University of Louisiana at Lafayette in 1999 and
2004 respectively. She has worked as a systems
engineer at Tata Consultancy Services, India
and is currently an Associate Professor of
Computer Science and Software Engineering at
Rose-Hulman Institute of Technology, where
she teaches courses such as Computer
Architecture, Operating Systems, Computer
Networks, Computer Security, and Mobile
Computing.

Larry Merkle received a B.S. in 1987 from

Rensselaer Polytechnic Institute, as well as a
M.S.C.E in 1992 and a Ph.D. in 1996 from the
Air Force Institute of Technology. In the Air
Force, he worked in AI, parallel algorithms,
evolutionary computation, computational
science and engineering, and basic research. He
has taught at the United States Air Force
Academy and Rose-Hulman Institute of
Technology, and held several adjunct positions.
He has advised 8 senior thesis students, has
taught 22 different courses, and has over 65
publications and presentations. He is currently
the assistant chair of Wright State University’s
Department of Computer Science and
Engineering.

http://ximbiot.com/cvs/manual/cvs-1.11.22/cvs.html
http://ximbiot.com/cvs/manual/cvs-1.11.22/cvs.html
http://tortoisesvn.tigris.org/
http://scplugin.tigris.org/
http://rapidsvn.tigris.org/
http://www.subversionary.org/howto/setting-up-a-server-on-windows
http://www.subversionary.org/howto/setting-up-a-server-on-windows
http://www.apache.org/dist/httpd/binaries/win32/
http://www.apache.org/dist/httpd/binaries/win32/
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91

Figure 1. Response to "Version control software will help ensure that my
components will interface correctly with those of my teammates."

Figure 2. Response to "Version control software will reduce duplicated effort within my team."

Figure 3. Response to "Version control software will enable the members of
my team to obtain the correct versions of each others' code reliably."

46 COMPUTERS IN EDUCATION JOURNAL

Figure 4. Response to “Version control software will enable me to
 share code with my teammates efficiently. "

Figure 5. Response to "Version control software will enable my instructor to
 answer my code-related questions efficiently and effectively."

Figure 6. Steps to checkout and update a repository’s contents from the command line.
COMPUTERS IN EDUCATION JOURNAL 47

(a) Right-click to checkout from the repository. (b) Specify location of repository.

(c) Contents of repository have been copied to
local folder.

(d) Adding a new file to the repository.

48 COMPUTERS IN EDUCATION JOURNAL

(e) Committing the modified file to the
repository.

(f) Adding a meaningful message and selecting
files to commit.

Figure 7. Steps to checkout and update a repository’s contents using the Tortoise SVN GUI.

COMPUTERS IN EDUCATION JOURNAL 49

Figure 8. Instructions to setup an SVN server on a local Windows machine.

50 COMPUTERS IN EDUCATION JOURNAL

