
 

40  COMPUTERS IN EDUCATION JOURNAL 

FORMULA   DRIVEN   POISSON   REGRESSION   ANALYSIS   IN   EXCEL 
  

William  P . Fox 
Department  of  Defense  Analysis 

Naval  Postgraduate  School 
 

Abstract 
 

In one of our elective courses, Dark Networks, 
the student must use Poisson Regression in their 
analysis. To the students this is a black box 
routine for which they do not understand the 
relationships that exist among the inputs or the 
outputs. We added a block on regression 
analysis to our statistical modeling for decision 
making to help students better understand these 
relationships across many regression techniques. 
Furthermore, we did it in Excel which is the 
software these students will have back in their 
professions in the real world. We provide two 
examples with their solutions from the literature 
to show Poisson regression in Excel. 
Additionally, we present a pattern recognition 
method for the Hessian matrix to find the 
Variance–Covariance matrix in Poisson 
regression which is used to obtain the 
coefficient’s standard errors. 

 
Disclaimer 

 
“The views expressed in this document are 

those of the author and do not reflect the official 
policy or position of the Department of Defense 
or U.S. Government.” 

 
Introduction 

 
We support our interdisciplinary department of 

Defense Analysis at the Naval Postgraduate 
School by teaching a three course sequence in 
mathematical modeling. One of our carry 
through topics in mathematical modeling is 
regression.  Our students initially encountered 
data where the outcome variable is numeric and 
normally distributed allowing them to use 
simple least squares techniques. In the first 
course in modeling the students had handled 
linear regression, polynomial regression, and 
even multivariable regression. In the second 

modeling course, we teach advanced regression 
techniques and forecasting as well as nonlinear 
regression for dealing with oscillating data. 
Each application is performed in Excel because 
this will be the software that our students will 
have after graduation. 

 
 In our Common Operational Research 

Environment (CORE) Lab work our students 
encounter situations where the outcome variable 
is not only numeric but also in the form of 
discrete counts. Often, it is a count of rare 
events such as the number of new cases of 
terrorist activities occurring within a population 
over a certain period of time, the number of  
certain types of IEDS encountered, or the 
number of significant acts of violence within a 
region. The goal of regression analysis in such 
instances is to model the dependent variable, y, 
as the estimate of outcome using some or all of 
the explanatory variables (in mathematical 
terminology estimating the outcome as a 
function of  explanatory or predictor variables). 
Although in the CORE lab much of this will be 
a Black-Box, it is necessary to understand the 
“output” values to better understand the model 
itself. It is more important that the students have 
a tool to reproduce their analysis in a software 
package that will be available to them in the 
future, such as Excel.  

 
According to Devore [1] simple linear 

regression is defined as follows. “There exists 
parameters B0, B1, and σ2 such that for any fixed 
input value of x, the dependent variable is 
related to x through the model equation,  Y = β0 
+ β1X1 + ε. The quantity ε in the model equation 
is a random variable assumed to be normally 
distributed with mean =0 and variance = σ2. We 
expand this definition to when the response 
variable, yi,  is assumed to have  a normal 
distribution with mean, µy, and standard 
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deviation,  σ,  we found that the mean could be 
modeled as a function of our multiple predictor 
variables {X1,X2,…,Xn}  using the linear 
function  Y = β0 + β1X1 + β2X2 …….+ βk Xk. 
We have used linear models for bivariate data 
such as y = a + bx or y=a+bx+cx2 and used 
models such as y=a0+a1x1+a2x2+…+anxn when 
we have n different independent  predictor 
variables.  The key assumptions that we used for 
least squares are the linearity of the relationship 
between dependent and independent variables, 
independence and normality of the errors, and 
homoscedasticity (constant variance) of the 
errors.  If any of these assumptions is violated 
then the adequacy of the model is diminished. In 
our first courses, we show the use of residual 
plots to give the students information about the 
adequacy of the model depending on the 
patterns seen or not seen in the residual plot.  
Our analysis and check for these assumptions 
generally concern examining the residual plot, a 
plot of the errors versus the model values, for 
patterns or no patterns [2, 3]. 

     
Normality  Assumption  Lost 

 
 According to Neter [4] and Montgomery [5], 

in the case of logistic and Poisson regression, 
the fact that probability lies between 0-1 
imposes a constraint.  We lose both the 
normality assumption of multiple linear 
regression and the assumption of constant 
variance. Without these assumptions the F and t 
tests have no basis for the analysis. When this 
happens, we must transform the model and the 
data. The new solution involves using the 
logistic transformation of the probability p or 
logit p, such that 

 
𝑙𝑙𝑙𝑙 � 𝑝𝑝

1−𝑝𝑝
� = β0 + β1Χ1 + β2Χ2…….+ βnΧn. 

 
They go on to explain that the β coefficients 

could now be interpreted as increasing or 
decreasing the log odds of an event, and exp(β) 
(the odds multiplier) could be used as the odds 
ratio for a unit increase or decrease in the 
explanatory variable [4,5].  

When the response variable is in the form of a 
count we face a yet different constraint. Counts 
are all positive integers and stand for rare 
events. Thus, the Poisson distribution (rather 
than the Normal distribution) is more 
appropriate since the Poisson has a mean greater 
than 0 and our counts are all positive counting 
numbers. So the logarithm of the response 
variable is linked to a linear function of 
explanatory variables such that  

 
ln (Y) = β0 + β1x1 + β2x2 … + βnxn 

 
and thus,  
 

Y =(𝑒𝑒𝐵𝐵0 )(𝑒𝑒𝐵𝐵1𝑥𝑥1 )(𝑒𝑒𝐵𝐵2𝑥𝑥2 ) … (𝑒𝑒𝐵𝐵𝑛𝑛𝑥𝑥𝑛𝑛 ) . 
 

In other words, the typical Poisson regression 
model expresses the log outcome rate as a linear 
function of a set of predictors. 
 

Assumptions  in  Poisson  Regression 
 

There are several key assumptions in Poisson 
regression that are different than the 
assumptions in the simple linear regression 
model. These include that the logarithm of the 
dependent variable changes linearly with equal 
incremental increases in the exposure variable. 
For example, if we measure risk in exposure per 
unit time and one group is counts per month and 
another is count per years we can convert all 
exposures to strictly counts.  We find that 
changes in the rate from combined effects of 
different exposures or risk factors are 
multiplicative. We find for each level of the 
covariates, the number of cases has variance 
equal to the mean which makes it follow a 
Poisson distribution. Further, we assume the 
observations are independent.  

 
We use diagnostic methods to identify 

violations of the assumption to determine 
whether variances are too large or too small 
including plots of residuals versus the mean at 
different levels of the predictor variable. Recall 
that in the case of normal linear regression, 
diagnostics of the model used plots of residuals 
against fits (fitted values). This implies that 
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some of the same diagnostics can be used in the 
case of Poisson Regression. We will use the 
residual or deviation plot, deviations versus the 
model to look for patterns as our main 
diagnostic method. 

 
In Poisson regression we start with the basic 

model shown in equation (1), 
 

        𝑌𝑌𝑖𝑖 = 𝐸𝐸[𝑌𝑌𝑖𝑖] + 𝜀𝜀𝑖𝑖  for i =1, 2, …, n.            (1) 
 

The i
th case mean response is denoted by ui, 

where ui can be one of many defined 
functions[4] but we elect to use only the form 
shown in equation (2), 
 
     ui = u(Xi,B) = exp(X’iB)  where ui>0.       (2) 
 

We assume that the variable, Yi, are 
independent Poisson random variables with 
expected value ui. 

 
In order to apply regression techniques, we 

will use the likelihood function [4, 5]. The 
likelihood function, L, is given in equation (3).   

 

𝐿𝐿 = ∏ 𝑓𝑓𝑖𝑖(𝑌𝑌𝑖𝑖) = ∏ (𝑢𝑢(𝑋𝑋𝑖𝑖,𝐵𝐵)𝑌𝑌𝑖𝑖exp ⁡[−𝑢𝑢(𝑋𝑋𝑖𝑖,𝐵𝐵)]
𝑌𝑌𝑖𝑖!

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1         

                                                                         (3) 
 

Most texts explain that maximizing this 
function is quite difficult, so they use the 
logarithm of the likelihood function shown in 
equation (4): 

 
ln(𝐿𝐿) = ∑ 𝑌𝑌𝑖𝑖 ln(𝑢𝑢𝑖𝑖) − ∑ 𝑢𝑢𝑖𝑖𝑛𝑛

𝑖𝑖=1 −𝑛𝑛
𝑖𝑖=1

∑ ln⁡(𝑌𝑌𝑖𝑖!𝑛𝑛
𝑖𝑖=1 )                                                     (4) 

 
where ui is the fitted model. 

 
We maximize this function to obtain the best 

estimates for the coefficients of the model.  
Numerical search techniques are used to obtain 
these estimates. We mention here that “good” 
starting points are required to possibly obtain 
convergence [6]. 

 
Within the model development we are 

concerned about the deviations or residuals as 

we previously mentioned. In Poisson regression, 
the deviance is modeled as shown in equation 
(5): 

 
𝐷𝐷𝐷𝐷𝐷𝐷 = 2 �∑ 𝑌𝑌𝑖𝑖𝑙𝑙𝑙𝑙 �

𝑌𝑌𝑖𝑖
𝑢𝑢𝑖𝑖
�𝑛𝑛

𝑖𝑖=1 − ∑ (𝑌𝑌𝑖𝑖 − 𝑢𝑢𝑖𝑖)𝑛𝑛
𝑖𝑖=1 �  (5) 

 
where ui is the fitted model. We note that 
because of term ln(Yi/ui) that if Yi=0 we  must 
set the ln(Yi/ui)=0. 
 

Inferences for the coefficients are carried out 
in the same fashion as with logistics regression. 
To estimate the variance-covariance matrix we 
require the use of the Hessian matrix. We define 
the Hessian, H(X), as the matrix of second 
partial derivatives of the ln(L) function.  The 
variance-covariance matrix, VC(X,B), is minus 
the inverse of this Hessian matrix evaluated 
with the final estimates of the coefficients, B. 

 
VC(X,B)= - H(X)-1 

 
 The main diagonal of the matrix are the 

estimates for the variance. Since we need the  
estimated standard deviations, seB, we take the 
square root of each main diagonal entry to 
obtain this estimate. We may then perform 
hypothesis tests of the coefficients using the t-
test. 

 
We use the logarithm of the likelihood 

function, equation (4). The Hessian is defined as 
the matrix of second partial derivatives. We will 
illustrate two Hessian modeling examples and 
then we will make a useful observation. 

 
Assume that our model is, yi=exp(b0+b1*xi). 

Putting this model into equation (4) we have, 
 
 ln(𝐿𝐿) = ∑ 𝑌𝑌𝑖𝑖 ln(exp⁡(𝑏𝑏0 + 𝑏𝑏1𝑥𝑥𝑖𝑖)) −𝑛𝑛

𝑖𝑖=1
∑ exp⁡(𝑏𝑏0 + 𝑏𝑏1𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1 − ∑ 𝑌𝑌𝑖𝑖!𝑛𝑛

𝑖𝑖=1  
 
We define the second partial derivatives as 

follows in equation (6): 
 

      𝑔𝑔𝑖𝑖𝑖𝑖 = 𝜕𝜕2(ln(𝐿𝐿))
𝜕𝜕𝑏𝑏𝑖𝑖𝜕𝜕𝑏𝑏𝑖𝑖𝑖𝑖

 for all i and j.               (6) 
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The estimates for the variance-covariance 
matrix are defined and are displayed in equation 
(7): 

            𝑠𝑠2(𝒃𝒃) = [(−𝑔𝑔𝑖𝑖𝑖𝑖 )𝑩𝑩=𝒃𝒃]−1                    (7) 
 

We take these partial derivatives and set up the 
Hessian matrix, gij as shown in the matrix 
below: 

 
 
 
 
 
 
 

 

𝑔𝑔𝑖𝑖𝑖𝑖 =

⎣
⎢
⎢
⎢
⎢
⎡ −��𝑒𝑒𝑏𝑏0+𝑏𝑏1𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� −��𝑥𝑥𝑖𝑖𝑒𝑒
𝑏𝑏0+𝑏𝑏1𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�

−��𝑥𝑥𝑖𝑖𝑒𝑒
𝑏𝑏0+𝑏𝑏1𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� −��𝑥𝑥𝑖𝑖2𝑒𝑒
𝑏𝑏0+𝑏𝑏1𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
⎦
⎥
⎥
⎥
⎥
⎤

 

 
When our model slightly differs, such as  

yi=exp(b0+b1x1i+b2x2i), then we find the 
Hessian matrix, gij. We note the similarities 
between the last two Hessian matrices. 

 
 
 
 

 

𝑔𝑔𝑖𝑖𝑖𝑖 =     

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −��𝑒𝑒𝑏𝑏0+𝑏𝑏1𝑥𝑥1𝑖𝑖+𝑏𝑏2𝑥𝑥2𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� −��𝑥𝑥1𝑖𝑖𝑒𝑒
𝑏𝑏0+𝑏𝑏1𝑥𝑥1𝑖𝑖+𝑏𝑏2𝑥𝑥2𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� −��𝑥𝑥2𝑖𝑖𝑒𝑒
𝑏𝑏0+𝑏𝑏1𝑥𝑥1𝑖𝑖+𝑏𝑏2𝑥𝑥2𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�

−��𝑥𝑥1𝑖𝑖𝑒𝑒
𝑏𝑏0+𝑏𝑏1𝑥𝑥1𝑖𝑖+𝑏𝑏2𝑥𝑥2𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� −��𝑥𝑥1𝑖𝑖
2

𝑛𝑛

𝑖𝑖=1

𝑒𝑒𝑏𝑏0+𝑏𝑏1𝑥𝑥1𝑖𝑖+𝑏𝑏2𝑥𝑥2𝑖𝑖� −��𝑥𝑥1𝑖𝑖𝑥𝑥2𝑖𝑖𝑒𝑒
𝑏𝑏0+𝑏𝑏1𝑥𝑥1𝑖𝑖+𝑏𝑏2𝑥𝑥2𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�

−��𝑥𝑥2𝑖𝑖𝑒𝑒
𝑏𝑏0+𝑏𝑏1𝑥𝑥1𝑖𝑖+𝑏𝑏2𝑥𝑥2𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� −��𝑥𝑥1𝑖𝑖𝑥𝑥2𝑖𝑖𝑒𝑒
𝑏𝑏0+𝑏𝑏1𝑥𝑥1𝑖𝑖+𝑏𝑏2𝑥𝑥2𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� −��𝑥𝑥2𝑖𝑖
2 𝑒𝑒𝑏𝑏0+𝑏𝑏1𝑥𝑥1𝑖𝑖+𝑏𝑏2𝑥𝑥2𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
 
We see the pattern in the matrix of partial 

derivatives and we can extend the pattern to 
easily obtain the Hessian for a model when we 
have n independent variables, yi=exp(b0+b1x1i 
+b2x2i+…+bnxni) and  we  identify  the  
common term in the  matrix as  the   summation,  

 

 
 

Σ exp(b0+b1x1i+b2x2i+…+bnxni). We call this 
summation P. This gives us a generic Hessian 
matrix for Poisson regression to use with our 
choice of the model from yi=exp 
(b0+b1x1i+b2x2i+…+bnxni), depending on the 
number of independent variables. 
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This is the generic Hessian matrix, so we need 

to replace the formulas with numerical values 
and compute the inverse of the negative of this 
matrix.  Once we replace the variables with their 
respective values we should have a non-singular 
square matrix that we can take the inverse of. 
The main diagonal entries of this matrix inverse 
are the estimates for the variances of the 
coefficients to the estimates of b. The square 
root of the entries of the main diagonal are the 
estimates of the se of the coefficients of b to be 
used in the hypothesis testing for each 
coefficient, b as 

 
t*=bi/se(bi) 

               
where se is the standard error associated with bi. 
 

We  now have all  the  equations  that we need  
to  build   the   tables   of   outputs   for   Poisson  

 
 

 
regression that are similar to Excel’s 
prepackaged regression outputs. 

 
Estimates  of  Regression  Coefficients 

 
We use one for the constant plus one for every  

predictor variable in the model being examined 
for the number of coefficients. Estimates are the 
final values (that converged) for the numerical 
search method to maximize the ln(L) equation.  
The values of se are the square roots of the main 
diagonal of the inverse of (-) the Hessian matrix. 
The values of t*=  (final coefficient estimate)/se  
and the p-value are displayed, where the p-value 
is the probability associated with the  |t*| from 
P(T>|t*|). In our summary of Poisson 
regression analysis, let m = number of variables 
in the model, let k = number of data elements of 
the dependent variable, Y. We present the 
statistical formulas. 

 
 

 
 Degrees of 

freedom (df)  
Deviance Mean deviance, 

MDev 
Ratio 

Regression m Dreg=Dt-Dres MDev(reg)=Dreg/m |MDev(reg)| 
Residual k-1-m Dres=Result 

from equation 
(5) using the 
full model with 
m predictors. 

MDEV(res)= 
Dres/(k-1-m) 

 

Total k-1   Dt=Result from 
equation (5) 
using only 
y=exp(bo) as 
the best model 

MDev(t)= 
Dt/(k-1) 
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Illustrative  Examples 
 

The first example will be explained in more 
detail than the second example, for illustrative 
purposes, to show how we used the equations 
and Excel to perform Poisson Regression. We 
note that a prerequisite for using Poisson 
regression is that data for the dependent 
variable, Y, must be discrete counts data with 
large numbers a rare event. We have chosen two 
data sets [7] that have published solutions in the 
literature to be our examples. 
 

Example 1:  Caesarian Births 
 
The data is defined as follows: 
 
Csec= number of C-sections performed 
 
Hosp= type of hospital public or private, coded 

as (0-public or 1-private) 
 
Birth= number of births at the hospital 
 

 
 

This data was obtained through the record at 4 
private hospitals and 16 public hospitals. We 
desired to build a model to predict the number 
of c-section births as a function of the type of 
hospital and number of births. Since the y 
variable represents discrete counts of C-section 
births, Csec, with large numbers of Csec births 
being rare we should use Poisson regression.  

  
We list the steps required to obtain a 

regression model using Excel and Poisson 
regression. 

Step 1. Calculate the baseline constant model, 
y=exp(constant), using the Solver to obtain the 
value of the constant that minimizes the 
deviations, equation (5). We minimize equation 
(5) by varying the value cell of the constant. 

 
Step 2. Repeat Step 1 for the full model, 

y=exp(b0+b1x1+b2x2+….+bnxn), using the 
Solver to obtain the values of the parameters 
{b0, b1, b2, …., bn) that minimize the deviations 
using equation (5). 

 
Step 3. Using the pattern recognition format as 

explained for the Hessian concerning equation 
(7), compute the standard errors, se, for the 
parameter estimates. 

 
Step 4. Compute the individual deviations and 

plot the indexed deviations. 
 
Step 5. Compute the p-values as appropriate. 
 
Step 6. Put all values into tables. 
 
Step 7. Plot the deviation. 
 
We illustrate these steps using Excel.  
 
Step 1:We have entered the data so first we 

calculate the information for the constant model 
y=exp(constant). 

 
For the constant model, 𝑦𝑦 = 𝑒𝑒𝑏𝑏0 , we initially 

set the decision variable for the solver, b0,  to 0. 
The final result from the solver is that 
b0=2.711377991 and the constant model is 
𝑦𝑦 = 𝑒𝑒2.711377991 . Our objective function value 
when b0=2.711377991 is  99.99028.  
 

Step 2. We repeat using the solver for the full 
model, y=exp(b0+b1*hosp+b2*birth). We 
initially set the coefficients, decision variables 
b0,b1,b2 to 0. Our final coefficients are  
b0=1.350998944, b1 = 1.0045138972, and 
b2=0.00032607.  Our final objectives function 
value is 18.0392. 

 

 Csec Hosp Birth  Csec Hosp Birth 
1 8 0 236 11 10 1 357 
2 16 1 739 12 16 1 1080 
3 15 1 970 13 22 1 1027 
4 23 1 2371 14 2 0 28 
5 5 1 309 15 22 1 2507 
6 13 1 679 16 2 0 138 
7 4 0 26 17 18 1 502 
8 19 1 1272 18 21 1 1501 
9 33 1 3246 19 24 1 2750 
10 19 1 1904 20 9 1 192 
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Model 1 y*ln(exp(M1) ln(Fact(Y)) Deviation equation
15.05 21.69102393 10.6046029 -5.05549 -7.05
15.05 43.38204786 30.6718601 0.979372 0.950000002
15.05 40.67066987 27.8992714 -0.04992 -0.05
15.05 62.36169379 51.6066756 9.754673 7.950000002
15.05 13.55688996 4.78749174 -5.5097 -10.05
15.05 35.24791388 22.5521639 -1.90357 -2.05
15.05 10.84551196 3.17805383 -5.30033 -11.05
15.05 51.51618183 39.3398842 4.428159 3.950000002
15.05 89.47547371 85.054467 25.90928 17.95
15.05 51.51618183 39.3398842 4.428159 3.950000002
15.05 27.11377991 15.1044126 -4.08793 -5.05
15.05 43.38204786 30.6718601 0.979372 0.950000002
15.05 59.6503158 48.4711814 8.352618 6.950000002
15.05 5.422755982 0.69314718 -4.03646 -13.05
15.05 59.6503158 48.4711814 8.352618 6.950000002
15.05 5.422755982 0.69314718 -4.03646 -13.05
15.05 48.80480384 36.3954452 3.221888 2.950000002
15.05 56.93893781 45.3801389 6.996033 5.950000002
15.05 65.07307179 54.7847294 11.20022 8.950000002
15.05 24.40240192 12.8018275 -4.62738 -6.05

301 816.1247753 608.501426 Sums 49.99514 3.70058E-08
OBJ Func -93.37665016

99.99028 Total Deivations  
 
 

Model 2 y*ln(exp(m2)) ln(fact(Y)) Dev Eq y-u
4.17015 11.42361596 10.6046 5.211916 3.82985
13.9727 42.19368496 30.67186 2.167735 2.027302

15.06581 40.68642 27.89927 -0.06567 -0.06581
23.78976 72.89287012 51.60668 -0.7765 -0.78976
12.14472 12.48447121 4.787492 -4.43728 -7.14472
13.70199 34.02803267 22.55216 -0.68369 -0.70199
3.894155 5.437907292 3.178054 0.10727 0.105845

16.6249 53.40713457 39.33988 2.537206 2.375096
31.64463 114.0007586 85.05447 1.383991 1.355371
20.42949 57.32261015 39.33988 -1.37827 -1.42949
12.33629 25.1254571 15.10441 -2.09961 -2.33629

15.616 43.97273516 30.67186 0.388684 0.384001
15.34844 60.0823106 48.47118 7.920623 6.651556
3.896696 2.720257935 0.693147 -1.33396 -1.8967
24.86848 70.69922307 48.47118 -2.69629 -2.86848
4.038999 2.79199383 0.693147 -1.4057 -2.039
12.93357 46.07687136 36.39545 5.94982 5.066431
17.91382 60.59701966 45.38014 3.337952 3.086182
26.91911 79.02807853 54.78473 -2.75479 -2.91911
11.69012 22.1286941 12.80183 -2.35367 -2.69012
300.9998 857.1001469 608.5014 9.019768 0.000167

OBJ Func -52.40111134 Dev due to residuals
18.0392
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Step 3. We built the Hessian matrix from 
knowing the pattern and then we take the 
inverse of (-) the Hessian matrix. After we take 
the inverse we take the square root of the values 
along the main diagonal as the standard errors. 

 
(-)Hessian

300.9998327 284.9998324 467947.3576
284.9998324 284.9998324 466195.4648
467947.3576 466195.4648 1037620324

Inverse
0.06254362 -0.06189194 -3.98392E-07

-0.06189194 0.074484805 -5.55339E-06
-3.98392E-07 -5.55339E-06 3.63851E-09  

 
We take the square root of the values along the 

main diagonal to obtain the standard errors of 
the estimates, 

 
𝑠𝑠𝑠𝑠(𝑏𝑏0) = √0.06254362 = 0.250087225 
𝑠𝑠𝑠𝑠(𝑏𝑏1) = √0.074484805 = 0.272919045 

𝑠𝑠𝑠𝑠(𝑏𝑏2) = √3.63851𝐸𝐸 − 09 = 6.03291𝐸𝐸 − 05 
 

Step 4. We compute the deviations and obtain 
a plot, as shown in Figure 1 below. We interpret 
the plot as we examine the plot for patterns or 
no patterns. 

 
Step 5 & 6. We place the information into the 

tables noting that there are 20 data elements in 
Y, the full model has two variables plus a 
constant. Where appropriate we computed the p-
values. 
 

To compute the p-values, we use t.dist.2t(x,df). 
We find that all the coefficients are significant 
at a 0.05 level. We accept the full model to use 
for predictive analysis. For our example, our 
model for the number of C-section births  is 

 
Y=e(1.350993605+1.045142687*hosp+0.000326073* births) 

 
Step 7. We examine the deviation plot, Figure 

1, from the deviations versus the model. We 
look for one of these patterns: linear, curved, 
fanning (in or out) or for randomness of the plot 
[2, 3]. We see no pattern and accept the full 
model as adequate. 

 
Analysis  of  Deviance 

 
 Degrees of 

Freedom (df)  
Deviance Mean deviance Ratio 

Regression 2  (two variables 
in model-hosp, 
births) 

(99.9902-
18.0392)=81.951077 

81.951077/2=40.9755 |40.9755|= 
40.98  

Residual 17 (Y-1-2) 18.0392 18.0392/17=1.06112  
Total 19  (Y-1) 99.9902 99.9902/19=5/26264  
 

Analysis  of  Regression Coefficients  
 

 Df Coefficient se t* p-values Significant 
b0 2 1.351 0.2505367 5.3924 0.01 Yes 
b1 17 1.0451 0.2617086 3.9934 0.00047 Yes 
b2 19 0.000326 0.00000604 5.397 0.0000165 Yes 
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Figure 1. Deviation plot of deviations versus model from C-sec example. 
 
Since the model is adequate, we use the model 

for predictions and interpolations. If we know 
we have a private hospital with 363 births then 
our estimate for the number of caesarians births 
is 

 
Y=e(1.350993605+1.045142687*+0.000326073* 363)=12.36 

or approximately 12. 
 
 
 

 
Checking  our  Analysis  Decisions 

 
We can always check our analysis to see if a 

smaller model would be more adequate. We 
could also build an intermediate model: 

 
Y=e(bo+hosp*b1) 

 
We would use all the same equations as before 

and we could have built the following two 
tables: 

 
Analysis  of  Deviance 

 
 df Deviance Mean Deviance Ratio 
Regression 1 63.575 63.575 63.575 
Residual 18 36.414 2.023  
Total 19 99.9902 5.263  
 

Analysis  of  Regression  Coefficients 
 
 Coefficient Estimated SE t* Significant at 

0.05 
b0 2.132 0.102 20.95 Yes 
b1 0.0004405 .0000540 8.17 Yes 

 
How do we know which equation to use: 
 
Y=e(b0+b1*hosp ) or 
 
Y=e(b0+b1*hosp+b2*births) 

 
 

 
Deviance serves the purpose of comparing 

models.  Model I, the one variable predictor 
model, has a regression deviance of 63.575 (or 
about 64% is explained by the model) where 
Model II, the full model, has a regression 
deviance of 81.95 (or about 82% is explained by 
the model). This is a difference of 18.375 with a 
change of df of 1. We can use a χ2 at 1 degree of 
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freedom to find it is significant at beyond 0.005. 
Thus, the model with more df and smaller 
residual deviance is better. 

 
Example 2. Issues when some of the Y values 

are zero. 
  
This example was chosen because it illustrates 

what is required when any Y values are equal to 
0.   

 
A cohort of subjects, some non-smokers and 

others smokers, was observed for several years. 
The number of cases of lung cancer diagnosed 
among the different categories was recorded. 
Data regarding the number of years of smoking 
were obtained from each individual. For each 
category the person-years of observation were 
calculated. We desire to build a mathematical 

model that predicts the cases of lung cancer as a 
function of these other variables.  

 
We define the variables as follows: 
 
Day= average number of cigarettes smoked 

per day. 
 
YS=number of years smoking 
 
Person Yr= number of total person years 

observed 
 
Cases=number of cases of lung cancer 

observed. 
 
The following data records were taken directly 

from the literature. 

 
 

# Day YS Person 
Year 

Cases # Day YS Person 
Year 

Cases 

1 0 15 10366 1 19 16 45 1893 2 
2 0 25 5969 0 20 16 55 280 5 
3 0 35 3512 0 21 20 15 5683 0 
4 0 45 1421 0 22 20 25 5483 1 
5 0 55 826 2 23 20 35 3646 5 
6 5 15 3121 0 24 20 45 1567 9 
7 5 25 2288 0 25 20 55 416 7 
8 5 35 1648 1 26 27 15 3042 0 
9 5 45 927 0 27 27 25 4290 4 
10 5 55 606 0 28 27 35 3529 9 
11 11 15 3577 0 29 27 45 1409 10 
12 11 25 2546 1 30 27 55 284 3 
13 11 35 1826 0 31 40 15 670 0 
14 11 45 988 2 32 40 25 1482 0 
15 11 55 449 3 33 40 35 1336 6 
16 16 15 4317 0 34 40 45 556 7 
17 16 25 3185 0 35 40 55 104 1 
18 16 35 849 0      

 
We build the simple model, y=exp(constant) 

to obtain the total deviance. The total deviance 
is found to be 137.291. Next, we will build the 
full model. 

 
Cases=e(b0+b1*Day+b2*Y S+b3*Person Year)) 

 
Using Excel we can build the models and 

obtain the following outputs: 

 
Analysis  of  Deviance 

 
 df deviance Mean 

deviance 
Ratio 

Regression 3 63.169 21.056 21.06 
Residual 31 74.122 2.391  
Total 34 137.291 4.037  
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Analysis  of  Regression  Coefficients 
 

 Coefficients Estimated 
SE 

t* Significant at 
0.05 

Constant -4.669 0.988 -
4.72 

Yes 

Day 0.0559 0.01 5.58 Yes 
YS 0.0888 0.0166 5.34 Yes 
Person 
Yr 

0.000410 0.000104 3.94 Yes 

 
Our best one term model was found to be  
y=e(b0+b1*Person Year) and we display the following 
tables for later comparison: 
 

Analysis  of  Deviance 
 

 df Deviance Mean 
deviance 

Ratio 

Regression 1 8.744 8.744 8.74 
Residual 33 128.546 3.895  
Total 34 137.291 4.037  
 

Analysis  of  Regression  Coefficients 
 

 Coefficients Estimated 
se 

t* Significant 
at 0.05 

Constant 1.208 0.169 7.16 Yes 
Person 
Yr 

-0.0001921 0.0000711 -
2.70 

No 

 
We compare the models to see the difference 

in regression deviance is 63.168-8.744=54.415 
while df changed from 3-1=2.  We find the χ2 
value of 54.415 at 2 df and it is highly 
significant. We obtain the deviation plot, Figure 
2, for the deviances versus the fitted model.  We 
do not see any pattern. Thus, we accept our 
model as adequate. 

 
 
 
 

 
 

Figure 2. Deviation plot of deviations versus model in the full model from example 2. 
 

Conclusions 
 

Once adequate models are obtained, we may 
use these models to predict or interpolate 
information. A measure of the goodness of fit is 
obtained by using the deviance statistic of a 
baseline line against the fuller model. We were 
surprised by the number of statistical packages 
that do not have Poisson regression as an option.  

 
Most textbooks that mention Poisson regression 
only mention the basic model and then show 
output from a statistical program such as SAS or 
R. Our students want to know “what, why, and 
how”. The black box does not provide all these 
answers initially. Having gone through building 
the Excel model to see where all the pieces fit 
the student and the instructor both have a better 
understanding of the results from the black box. 
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Furthermore, if a special statistical package is 
not available, a complete Poisson regression can 
be built in Excel by the use of the formulas 
given. 

 
Student reaction has been varied. Although a 

small number of students still like only the black 
box approach, the majority responded that 
developing the models in Excel provided them 
with insights that they would not get in the 
black box approach. Some of the insights 
pointed out by the students include: 
 

(1) Understanding the importance of Y being a 
discrete count where some values are “rare 
events”. 
 

(2) Understanding that independent variables 
may be both categorical and quantitative 
inputs which do not affect the model 
development. 
 

(3) The building of the regression models 
allowed better understanding of the 
“concept” of model building as well as 
model “selection” from real data sets. 
 

(4) Understanding the importance of including 
or excluding independent variables from 
the modeling process. The results were no 
longer just numbers. 
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