
NON-ITERATIVE SOLUTION OF ORDINARY AND PARTIAL
DIFFERENTIAL EQUATIONS USING SPREADSHEETS

 Ahmad Fakheri Mohammad H. Naraghi
 Department of Mechanical Engineering Department of Mechanical Engineering
 Bradley University Manhattan College

Abstract

Typically, in a basic course, the equations are
derived and the solutions are presented in
tabular or chart from. Spreadsheets provide an
attractive option, as most students have access
to and are familiar with their use. In this paper,
a classic algorithm, called Thomas algorithm,
used for the solution of set of algebraic
equations whose coefficient matrix is tri-
diagonal, is adopted to spreadsheets. It is used
to obtain solutions to a number of classical
problems in fluid mechanics and heat transfer
non-iteratively, and in some cases where the
governing equations are non-linear via some
iterations. Without needing much programming
skills, or needing to learn specialized software,
undergraduate students can use this approach
and easily obtain the solution to many otherwise
difficult problems and study the impact of
different parameters.

Nomenclature

G irradiation
h heat transfer coefficient
k thermal conductivity
l straight fin length
L characteristic length
p fin circumference
r radius (radial coordinate)
ri inner radius of an annular fin
ro outer radius of an annular fin
t time and straight fin thickness
t* Fourier Number, t* =

α t
L2

T temperature
T* T * =

T −T∞

Tb −T∞
or T −T∞

Ti −T∞

Tb base temperature
W straight fin width
x axial coordinate
x* x* =

x
L

Greek symbols
ε emissivity
σ Stefan Boltzmann constant

Introduction

Mathematical formulation of physical
phenomena often results in ordinary or partial
differential equations. These equations typically
do not have analytical solutions or the solution
methods are beyond the scope of undergraduate
courses. Typically, in a basic course, the
equations are derived and the solutions are
presented in tabular or chart form.

Numerical solutions are an alternative, often

the only option, for obtaining solutions and
cover a number of techniques that can be used
to obtain the solution of ordinary and partial
differential equations. Availability of the
computers has turned numerical methods into a
very powerful technique, and in many cases the
only one, for the solution of the problems.

An analytical solution allows the

determination of the solution at any point or the
solution is continuously defined in the domain
of interest. The finite difference solution allows
the determination of approximate solution only
at discrete, pre-selected points in the domain of
interest. The solution at other points is
obtained by interpolation.

28 COMPUTERS IN EDUCATION JOURNAL

Numerical solutions have the disadvantage
that they need the knowledge of either a
programming language or specialized software.
The standard language programming courses are
vanishing in undergraduate engineering
programs. Few programs require courses in
FORTRAN, Basic or C languages. Equation
solvers are increasingly being used for obtaining
numerical solutions, and the choice of what to
use is primarily determined by the availability
of the software and preference of the faculty.
The use of equation solvers still requires
learning of the software(s) used by the different
faculty and some structured programming skills.

Spreadsheets provide an option that at least

eliminates the need for learning a programming
language, as most students have access to and
are familiar with their use. They also provide a
natural environment for numerical solutions, as
each cell becomes a node. The built in plotting
capabilities are also great help in presenting and
understanding the results. One drawback of
using spreadsheets for numerical solution is the
user’s lack of much control over spreadsheets’
built in iterative schemes. This results in the
slow convergence rates and limits their use to
solving only simple problems.

Most differential or partial differential

equations encountered in the mechanical
engineering are second order boundary value
problems, whose boundary conditions are
specified at two or more points over the domain.
The finite difference solution of these equations
results in sets of algebraic equations whose
coefficients matrix is tri-diagonal.

In this paper, a classic algorithm, called

Thomas algorithm, used for the solution of set
of algebraic equations whose coefficient matrix
is tri-diagonal, is adopted to spreadsheets. It is
used to obtain solutions to a number of
problems in fluid mechanics and heat transfer
non-iteratively, and in some cases where the
governing equations are non-linear via some
iterations.

Without needing much programming skills, or
needing to learn specialized software,
undergraduate students can use this approach
and obtain the solution to many otherwise
difficult problems easily and study the impact of
different parameters.

Analysis

A tri-diagonal matrix is a matrix with nonzero

elements only on the main diagonal and on the
diagonals immediately above and immediately
below the main one as shown below. Linear
algebraic equations with tri-diagonal coefficient
matrix frequently arise in the finite difference
solutions.

B1 C1

A1 B2 C2

A3 B3 C3

An−1 Bn−1 Cn−1

An Bn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

X1

X2

X3

Xn−1

Xn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

R1

R2

R3

Rn−1

Rn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(1)

Figure 1 shows a FORTRAN algorithm,

known as the Thomas algorithm [1], provides an
efficient method for solving such equations. It
essentially transforms the tri-diagonal matrix
into an upper triangular one which is then
solved by back substitution.

C PROGRAM TRIDI SOLVES A SET OF EQUATIONS
C WITH TRIDIAGONAL COEFFICIENT MATRIX
 SUBROUTINE TRIDI(A,B,C,X,R,N)
 REAL A(100),B(100),C(100),R(100),X(100)
 A(N)=A(N)/B(N)
 R(N)=R(N)/B(N)
 DO 1 I=2,N
 II=-I+N+2
 BN=1/(B(II-1)-A(II)*C(II-1))
 A(II-1)=A(II-1)*BN
 1 R(II-1)=(R(II-1)-C(II-1)*R(II))*BN
 X(1)=R(1)
 DO 2 I=2,N
 2 X(I)=R(I)-A(I)*X(I-1)
 RETURN
 END

Figure 1. FORTRAN Code for

 Tri-diagonal Matrix.

COMPUTERS IN EDUCATION JOURNAL 29

30 COMPUTERS IN EDUCATION JOURNAL

isual Basic Applications, VBA, has been
TRIDI(starting cell of the column containing

ll of the column containing array B:

V
integrated in Excel. Visual Basic is a high-level
programming language that allows development
of among other things User Defined Functions
in Excel. Figure 2 is the VBA implementation
of Thomas algorithm. The function TRIDI is an
array function that returns N values for X1
through XN. Because TRIDI is an array
function, you need to select N cells in a column
before you enter the function. You also must
press Control-Shift-Enter when entering the
function. The syntax of TRIDI is:

=
array A: Ending cell of the column containing
array A,
starting ce
Ending cell of the column containing array B,
starting cell of the column containing array C:
Ending cell of the column containing array C,
starting cell of the column containing array X:
Ending cell of the column containing array X)

Option Base 1
Function TRIDI(ByVal Ac As Range, ByVal Bc As Range, ByVal Cc As Range, _
ByVal Rc As Range) As Variant
 Dim BN As Single
 Dim i As Integer
 Dim II As Integer
 Dim A() As Single, B() As Single, C() As Single, R() As Single, X() As Single

 N = Ac.Rows.Count
 ReDim A(N), B(N), C(N), R(N), X(N)
 For i = 1 To N
 A(i) = Ac.Parent.Cells(Ac.Row + i - 1, Ac.Column)
 B(i) = Bc.Parent.Cells(Bc.Row + i - 1, Bc.Column)
 C(i) = Cc.Parent.Cells(Cc.Row + i - 1, Cc.Column)
 R(i) = Rc.Parent.Cells(Rc.Row + i - 1, Rc.Column)
 Next i
 A(N) = A(N) / B(N)
 R(N) = R(N) / B(N)
 For i = 2 To N
 II = -i + N + 2
 BN = 1 / (B(II - 1) - A(II) * C(II - 1))
 A(II - 1) = A(II - 1) * BN
 R(II - 1) = (R(II - 1) - C(II - 1) * R(II)) * BN
 Next i
 X(1) = R(1)
 For i = 2 To N
 X(i) = R(i) - A(i) * X(i - 1)
 Next i
 TRIDI = Application.WorksheetFunction.Transpose(X)
End Function

Figure 2. VBA Code for Solving a Tri-diagonal Matrix Using Excel.

For example assume that there are 21 nodes,

and the columns A, B, C, and D contain values
of A, B, C, and R. To use the TRIDI function
enter values of A, B, C and R in cells A1
through D21. Then select the cells in the
column that will hold the values of X, in this
case E1:E21 and type

=TRIDI(A1:A21, B1:B21, C1:C21, D1:D21)
in cell E1, then press Control-Shift-Enter
(command Enter on Mac) to complete the array
function. Excel places { } characters around the
function to indicate it is an array function and
computes the values of X and puts them in cells
E1:E21.

As described in [2] to use this function in an
Excel workbook:
 1. Start a new workbook.
 2. Start VBA (Press Alt+F11)
 3. Insert a new module (Insert > Module)
 4.Copy and Paste the Excel User Defined

Function (UDF). For example all the text
in Fig. 2.

 5. Exit VBA (Press Alt+Q)
 6. Use the functions (They will appear in the

Paste Function dialog box, Shift+F3,
under the "User Defined" category)

To use a UDF in more than one workbook,

you need to save your function as a custom add-
in:

1. Save your excel file that contains your VBA

functions as an add-in file (.xla).
2. Load the add-in (Tools > Add-Ins...).

Note that unless you provide your UDF to

others, they would not be able to use your
spreadsheets that use to your UDFs [2]. A
spreadsheet containing function TRIDI can be
downloaded from [3] and can be turned into a
USF using the above procedure.

Examples

The approach is demonstrated by several

examples.

Transient heat conduction

The first example is transient conduction in a
wall. The nondimensional equations are:

∂ 2T *

∂x*2 =
∂T *

∂t* (2)

x* = 0 ∂T *

∂x* = 0 (3)

x* = 1 ∂T *

∂x* = −BiT * (4)

t* = 0 T * = 1 (5)

Dropping the asterisks for simplicity, the finite

difference of Eq. (2) is

Ti+1 − 2Ti +Ti−1

Δx()2 =
Ti −Ti

o

Δt()
 (6)

which simplifies to

Ti−1 − βTi +Ti+1 = −αTi

o (7)
T1 −T2 = 0. (8)
−TN−1 + 1+ BiΔx()TN = 0 (9)

α =
Δx()2

Δt()
β = 2 +α

 (10)

Therefore,

Ai = 1
Bi = −β
Ci = 1

Ri = −αTi
o

for 1 < i < N (11)

And

B1 = 1, C1 = −1, R1 = 0
AN = −1, BN = 1+ BiΔx(), R1 = 0

 (12)

Note that A1 and CN are not used and are

typically set to be 1. In matrix form, the finite
difference equations become

1 −1
1 −β 1

1 −β 1

1 −β 1
−1 1+ BiΔx()

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

T1

T2

T3

Tn−1

Tn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

0
−αT2

o

−αT3
o

−αT3
o

0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(13)

The x direction was discritized using 21 nodes

and subroutine TRIDI was used to obtain the
solution directly. The spreadsheet
implementation is shown in Appendix A. The
solution was also obtained using the iterative
capabilities of Excel by solving for temperature
of node i from Eq. (7)

Ti =
Ti+1 +Ti−1 +αTi

o

β
 (14)

COMPUTERS IN EDUCATION JOURNAL 31

and entering it in cells corresponding to nodes 2
to N-1.

The content of the cell corresponding to node

1 is set equal to the one for node 2, to satisfy Eq.
(3). To satisfy Eq. (4), the content of cell
corresponding to the temperature of node N is
set to the content of the cell corresponding to
node N-1, divided by 1+ BiΔx , or

TN =

TN−1

1+ BiΔx
 (15)

It took around 700 iterations to obtain the

results up to t*=1, using Δt of 0.1 and 21 nodes
in the x direction, using a convergence tolerance
of 10-5. The maximum difference between the
iterative and direct solutions was less than 0.2%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2

Fo

TRIDI Solution
Analytical

Figure 3. Comparison of Numerical and

Analytical Solutions.

Figure 3 shows a comparison of the numerical

and analytical solutions. The analytical solution
is obtained by taking the first four terms of the
infinite series, which as expected should provide
accurate results for Fourier number larger than
0.2. As can be seen, there is close agreement
between the numerical and analytical solutions.

Convective fins

This method is an excellent approach for
analysis of fins (extended surfaces). The
governing equation for fins is given by:

d
dx

kAx
dT
dx

⎛
⎝
⎜

⎞
⎠
⎟ − h dAs

dx
(T −T∞) = 0 (16)

where A(x) is the cross-sectional area of the fin
and As (x) is the surface area through which heat
is transferred by convection. The boundary
conditions are:

T (0) = Tb and at x=L, (insulated tip) dT /dx = 0

Equation (16) can be written as:

d 2T
dx 2 +

1
Ax

dA
dx

dT dAs−
h 1

Ax

x

dx k dx
 (17) (T −T∞) = 0

The nondimensional form of equation (17) is:

d 2T *

dx*2 +
1
Ax

dAx
dx

dT *

dx* −
hL2

k
1
Ax

dAs

dx* T * = 0 (18)

And the finite difference form of equation (18)

is:

Ti+1

* − 2Ti
* +Ti−1

*

(Δx*)2 +
1
Ax

dAx

dx*
Ti+1

* −Ti−1
*

2Δx
−

hL2

k
1
Ax

dAs

dx* Ti
* = 0

 (19)

Or
AiTi−1

* + BiTi
* + CiTi+1

* = Ri (20)

where

Ai =
1

(Δx*)2 −
1
Ax

dAx

dx*
1

2Δx* (21)

Bi = −
hL2

k
1
Ax

dAs

dx* +
2

(Δx*)2

⎛

⎝
⎜

⎞

⎠
⎟ (22)

Ci =
1

(Δx*)2 +
1
Ax

dAx

dx*
1

2Δx* (23)

and

Ri = 0 (24)

The boundary conditions in finite difference
form are:

T1

* = 1. (25)

and

TN−1

* = TN
* (26)

32 COMPUTERS IN EDUCATION JOURNAL

where N is the total number of nodes (the last
node).

Hence, for the first and last nodes we have:

A1 = 1, , C , and (for the base) (27) B1 = 1 1 = 0 R1 = 1

AN = 1, BN = −1, CN = 0, and RN = 0 (for the tip) (28)

This model is used to analyze straight, circular

and triangular convective fins. For a straight
fin, Ax is constant. Therefore

Ai =

1
(Δx*)2 (29)

Bi = − M +
2

(Δx*)2

⎛

⎝
⎜

⎞

⎠
⎟ (30)

Ci =
1

(Δx*)2 (31)

Where M =
hL2

k
p
A

The dimensionless temperature distribution for
this fin based on the present approach and that
of exact solution are plotted in Figure 4. As
shown in this figure the results of temperature
distribution based on the present approach and
that of exact solution are almost identical
(relative error less than 0.5%).

For circular fins A(r) = 2πrtand As = 2 πr 2 − πri

2().
Note that for circular fins x is replaced by r. The
tri-diagonal matrix elements for circular fins
become:

Ai =
1

(Δr*)2 −
1

2r*Δr* (32)

Bi = − M +
2

(Δr*)2

⎛

⎝
⎜

⎞

⎠
⎟ (33)

Ai =
1

(Δr*)2 +
1

2r*Δr* (34)

Where M =
hL2

k
2
t

The dimensionless temperature distributions

along the radial direction are shown in Figure 5.

The results are for M=1.33 and for an annular

fin whose outer radius is twice its inner one. As
shown in this figure the resulting temperature

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x*

Exact
TRIDI Solution

M= 1.34

Figure 4. Dimensionless temperature
distribution for a rectangular straight fin.

distribution based on the present approach and
that of exact solution are very close (less than
1% relative error).

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r*

T Exact
TRIDI Solution

1.33M=

Figure 5. Dimensionless temperature

distributions for a circular fin.

The next fin considered is a triangular fin

shown in Fig. 6. The governing differential
equation for the temperature distribution is
given by [4]:

x* d 2T *

dx*2 +
dT *

dx* − MT * = 0 (35)

where M =
2hL2

kb
 (36)

The finite difference form of the triangular fin

equation is:

AiTi−1

* + BiTi
* + CiTi+1

* = Ri (37)

COMPUTERS IN EDUCATION JOURNAL 33

Figure 6. Schematics of a triangular fin.

where

Ai =
xi

*

Δx*2 −
1

2Δx* (38)

Bi = −
2xi

*

Δx*2 + M
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 (39)

Ci =
xi

*

Δx*2 +
1

2Δx* (40)

Ri = 0 (41)

The exact solution for triangular fins as

reported in the literature [4,5] is given by:

T * =
I0 (2 Mx*)
I0 (2 M)

 (42)

A finite, unspecified temperature is used for

the tip boundary condition. The cross-sectional
area of the triangular fin is zero at its tip; hence
the heat flux at the tip is zero. Therefore, the
actual boundary condition must be zero heat
flux at the tip. The heat flux at the tip predicted
by Equation (39) is finite. This is not a
physically realistic solution and appears to have
been used due to its ease in obtaining an
analytical solution.

For the present numerical approach the

physically realistic boundary condition of zero
heat flux at the tip, i.e., dT , is used. The
finite difference form of this boundary condition
leads toT .

/dx = 0

* = T *
1 2

The resulting temperature distributions based

on the present approach (with insulated tip) and

exact solution (with finite temperature at the tip)
are shown in Figure 7. As shown in Figure 7
there is close agreement between the results of
both methods.

This approach can be used to model a wide

range of extended surfaces with convection.
Two recent publications, [6] and [7], show
applications of numerical methods for analyzing
various fins, which resulted in equations that
can be easily, solved using the present approach.

0

0.1

0.2

0.3

0.4

0.6

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x*

0.5

0.7

0.8

Exact

TRIDI Solution (insulated tip)

Figure 7. Dimensionless temperature distributions
for a triangular fin.

Radiation fins

A more challenging problem is radiation fins,

which result in nonlinear differential equations.
An example of such fins is given in [8]. The
resulting differential equation for a rectangular
radiation fin is given by (see [8]):

d 2T
dx 2 −

εσ
kw

T 4 −
αG
εσ

⎛
⎝
⎜

⎞
⎠
⎟ = 0 (43)

Where, ε and α are total surface emissivity and
absorptivity, G is the external irradiation
(typically solar irradiation), k is the fin
conductivity and is the thickness of the fin.
The equilibrium temperature that a surface
would achieve if it is insulated and is subject to
irradiation G is given by:

w

Ts

4 =
αG
εσ

 (44)

x

L

2b

34 COMPUTERS IN EDUCATION JOURNAL

Using the equilibrium temperature and
dimensionless variables:

T * =
T
Tb

, Ts
* =

Ts
Tb

, x* =
x
L

 and λ =
εσTb

4L2

kw
 (45)

leads to the following differential equation
d 2T *

dx*2 − λ (T *4
−Ts

*4
) = 0 (46)

The boundary conditions to be satisfied are:

T * = 0 at x* = 0 (47)
dT *

dx* = 0 at x* = 1 (48)

To solve this problem using the present

approach the governing equation is linearized as

d 2T *

dx*2 − hr (T * −Ts
*) = 0 (49)

where
hr = λ (T *2

+Ts
*2

)(T * +Ts
*) (50)

is the radiative heat transfer coefficient. This
heat transfer coefficient is a function of fin
temperature. The finite difference form of the
above equation is given by:

AiTi−1
* + BiTi

* + CiTi+1
* = Ri (51)

Where

Ai =

1
(Δx*)2 (52)

Bi = −
2

(Δx*)2 + hri

⎛

⎝
⎜

⎞

⎠
⎟ (53)

Ci =

1
(Δx*)2 , (54)

Ri = −hri

Ts
* (55)

This case was solved by taking Δx* = 0.01

ir
h

T * = 0.5

 and
the initial value of is estimated based on

 at all locations and fixed values of λ

andTs
*

ir
h

ir
h

dT *

dx*

. The problem can be easily solved using
the TRIDI function to obtain the temperature
distribution. Then values are recalculated
using the new temperature distributions. The
equations are solved based on the revised .
This can be done by simply copy and paste of
the cell for the initial temperature calculation.
The cells can be copied and pasted a few times

until the temperature gradient, i.e. at the

base, between two consecutive revisions of
becomes negligibly small. It should be noted

that for
ir

h
λ ≤ 1.5

rh
 it takes about four revisions of

i
to get temperature gradient between two

consecutive calculations identical to five
decimal places. For larger values of λ about ten
revisions of temperatures are needed.

The efficiency of radiative fins is expressed by

[8]:
η =

(εσ L
q

T0
4 −αG)

=
q

εσLT0
4 (1−Ts

4)
 (56)

Substituting for q and making it dimensionless,
the above equation becomes:

η = −
λ

1
(1−Ts

4)
dT
dx

⎛
⎝
⎜

⎞
⎠
⎟
ξ = 0

 (57)

Figure 8 shows a graph of radiative fin

efficiencies versus λ with Ts as parameter. This
graph is produced based on the present approach
and it is a replica of what is given in [8]. The
graph given in heat transfer textbook by
Chapman [8] is based on a relatively complex
numerical approach given in a NASA report [9].

Conclusion

In this paper, it is shown that the spreadsheets

with a tri-diagonal matrix inversion module can
be used to obtain solutions to a wide range of
heat transfer problems. Use of this method does
not require programming skills, or to learn
specialized software. In most Thermal/Fluids
courses the emphasis is on the physical concepts
or numerical models, not programming skills.

COMPUTERS IN EDUCATION JOURNAL 35

9. Lieblein, S., Analysis of Temperature
Distribution and Radiant Heat Transfer Along
Rectangular Fin of Uniform Thickness, NASA
Tech. Note D-196, Washington, D.C., Nov.
1959.

0

0.2

0.4

0.6

0.8

1

0 0.8 1.6 2.4 3.20.

0
0.5
0.7
0.9

Figure 8. Efficiency of radiative fin of uniform
thickness versus different values of

Biographical Information

Dr. Ahmad Fakheri is a professor of Mechanical

Engineering at Bradley University. He completed
his undergraduate and graduate degrees all in
mechanical engineering at the University of Illinois.
His academic career has covered teaching and
research in the area of thermal sciences, academic
and professional leadership, and entrepreneurship.
He has made breakthrough contributions in the field
of heat exchangers, particularly on the application of
the Second Law of Thermodynamics to heat
exchangers. His work has led to the definition of the
concept of thermal efficiency for heat exchangers
and a new and simpler method for the design and
analysis of heat exchangers. Dr. Fakheri is a Fellow
of ASME and has served in a number of leadership
positions and committees, including ASME’s
Process Industries and Heat Transfer Divisions,
Manufacturing Group, ASME Board on Research
and Technology Development, and ASME
Education Center.

λ with θ sas
parameter.

The students can use this approach to obtain the
solution and study the impact of different
parameters.

References

1. http://en.wikipedia.org/wiki/Thomas_algorithm

2. http://www.vertex42.com/ExcelArticles/user-

defined-functions.html

3. http://energy.bradley.edu Dr. Mohammad Naraghi is a Professor of

Mechanical Engineering at Manhattan College. Prior
to joining Manhattan College, he was a Visiting
Assistant Professor of Mechanical Engineering at
University of Akron where he received his Ph.D. in
Mechanical Engineering. Dr. Naraghi worked
closely with NASA Glenn Research Center, through
research grants and a number of Summer Faculty
Fellowships, to develop a comprehensive Rocket
Thermal Evaluation code (RTE). Because of this
code, he received a certificate of recognition from
NASA for the creative development of technically
significant software which has been accepted and
approved for dissemination to the public by NASA.
Since the first release of RTE through NASA's
COSMIC library (July 1991), Dr. Naraghi's research
is in Thermal/Fluids area and he has published more
than sixty articles in ASME, AIAA and international
journals and conferences. He is recipient of a
number of research grants from NASA and Air
Force. Dr. Naraghi is a Fellow of ASME and a
member of AIAA’s Liquid Propulsion Technical
Committee.

4. Kakac, S. and Yener, Y., Heat Conduction,

Hemisphere Publishing Corporation, 2nd Edition,
1988

5. Arpaci, V. S., Conduction Heat Transfer ,

Assison-Wessley (1966).

6. Campo, A , Kirkmam, R.D., and McNabb, G.,”

Avenues for computing the heat transfer from a
circular fin of hyperbolic cross-sectional profile”
International Journal of Mechanical Engineering
Education, pp. 258-270, 2006.

7. Yovanovich, M.M., “Heat Balance Method for

Spines, Longitudinal and Radial Fins with
Contact Conductance and End Cooling,” AIAA
paper 2004-2569, presented at the 37th AIAA
Thermophysics Conference, Portland OR, 2004.

8. Chapman, A.J., Fundamentals of Heat Transfer,

Macmillan Publishing Company, 1987.

36 COMPUTERS IN EDUCATION JOURNAL

http://en.wikipedia.org/wiki/Thomas_algorithm
http://www.vertex42.com/ExcelArticles/user-defined-functions.html
http://www.vertex42.com/ExcelArticles/user-defined-functions.html
http://energy.bradley.edu/

Appendix A

Table A1.
 A B C D E F G H I

1 N 21 TRIDI Solution

2 dx 0.05 I A B C R R
3 dt 0.10 1 0 1 -1 0.00000 0.00000
4 alfa 0.025 2 1 -2.025 1 -0.02322 -0.02031
5 Bi 10 3 1 -2.025 1 -0.02317 -0.02023
6 beta -2.025 4 1 -2.025 1 -0.02308 -0.02009

22 20 1 -2.025 1 -0.025 -0.00845
23 21 -1 1.5 1 0 0
24
25 t 0 0.1
26 x T T
27 1 0 1 0.9287
28 2 0.05 1 0.9287
29 3 0.1 1 0.9269

46 20 0.95 1 0.3380
47 21 1 1 0.2253
48

Table A2 Formulas in the worksheet.

 A B C D E F G H I

1 N =21 TRIDI Solution
2 dx =1/(N-1) I A B C R R
3 dt 0.1 1 0 1 -1 0 0
4 alfa =dx^2/dt 2 1 =beta 1 =-alfa*H28 =-alfa*I28
5 Bi =10 3 1 =beta 1 =-alfa*H29 =-alfa*I29
6 beta =-2-alfa 4 1 =beta 1 =-alfa*H30 =-alfa*I30

22 20 1 =beta 1 =-alfa*H46 =-alfa*I46
23 21 -1 =1+Bi*dx 1 0 0
24
25 t 0 =H25+dt
26 x T T
27 =D3 =(D27-1)*dx 1 =TRIDI($E3:$E23,$F3:$F23,$G3:$G23,H3:H23)
28 =D4 =(D28-1)*dx 1 =TRIDI($E3:$E23,$F3:$F23,$G3:$G23,H3:H23)
29 =D5 =(D29-1)*dx 1 =TRIDI($E3:$E23,$F3:$F23,$G3:$G23,H3:H23)

46 =D22 =(D46-1)*dx 1 =TRIDI($E3:$E23,$F3:$F23,$G3:$G23,H3:H23)
47 =D23 =(D47-1)*dx 1 =TRIDI($E3:$E23,$F3:$F23,$G3:$G23,H3:H23)
48

COMPUTERS IN EDUCATION JOURNAL 37

