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Abstract 
 

Typically, in a basic course, the equations are 
derived and the solutions are presented in 
tabular or chart from. Spreadsheets provide an 
attractive option, as most students have access 
to and are familiar with their use.  In this paper, 
a classic algorithm, called Thomas algorithm, 
used for the solution of set of algebraic 
equations whose coefficient matrix is tri-
diagonal, is adopted to spreadsheets.  It is used 
to obtain solutions to a number of classical 
problems in fluid mechanics and heat transfer 
non-iteratively, and in some cases where the 
governing equations are non-linear via some 
iterations.  Without needing much programming 
skills, or needing to learn specialized software, 
undergraduate students can use this approach 
and easily obtain the solution to many otherwise 
difficult problems and study the impact of 
different parameters. 

 
Nomenclature 

 
G irradiation 
h heat transfer coefficient 
k thermal conductivity 
l straight fin length  
L characteristic length  
p fin circumference 
r radius (radial coordinate)  
ri inner radius of an annular fin  
ro outer radius of an annular fin 
t time and straight fin thickness 
t* Fourier Number, t* =

α t
L2  

T temperature 
T* T * =

T −T∞

Tb −T∞
or T −T∞

Ti −T∞
 

 
 
 

 
Tb base temperature 
W straight fin width 
x axial coordinate 
x* x* =

x
L

 

 
Greek symbols 
ε emissivity 
σ Stefan Boltzmann constant 
 

Introduction 
 

Mathematical formulation of physical 
phenomena often results in ordinary or partial 
differential equations. These equations typically 
do not have analytical solutions or the solution 
methods are beyond the scope of undergraduate 
courses.  Typically, in a basic course, the 
equations are derived and the solutions are 
presented in tabular or chart form.   

 
Numerical solutions are an alternative, often 

the only option, for obtaining solutions and 
cover a number of techniques that can be used 
to obtain the solution of ordinary and partial 
differential equations.  Availability of the 
computers has turned numerical methods into a 
very powerful technique, and in many cases the 
only one, for the solution of the problems. 

 
An analytical solution allows the 

determination of the solution at any point or the 
solution is continuously defined in the domain 
of interest.  The finite difference solution allows 
the determination of approximate solution only 
at discrete, pre-selected points in the domain of 
interest.   The solution at other points is 
obtained by interpolation.  
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Numerical solutions have the disadvantage 
that they need the knowledge of either a 
programming language or specialized software.  
The standard language programming courses are 
vanishing in undergraduate engineering 
programs.  Few programs require courses in 
FORTRAN, Basic or C languages.   Equation 
solvers are increasingly being used for obtaining 
numerical solutions, and the choice of what to 
use is primarily determined by the availability 
of the software and preference of the faculty.   
The use of equation solvers still requires 
learning of the software(s) used by the different 
faculty and some structured programming skills. 

 
Spreadsheets provide an option that at least 

eliminates the need for learning a programming 
language, as most students have access to and 
are familiar with their use.  They also provide a 
natural environment for numerical solutions, as 
each cell becomes a node.  The built in plotting 
capabilities are also great help in presenting and 
understanding the results.  One drawback of 
using spreadsheets for numerical solution is the 
user’s lack of much control over spreadsheets’ 
built in iterative schemes.  This results in the 
slow convergence rates and limits their use to 
solving only simple problems. 

 
Most differential or partial differential 

equations encountered in the mechanical 
engineering are second order boundary value 
problems, whose boundary conditions are 
specified at two or more points over the domain.  
The finite difference solution of these equations 
results in sets of algebraic equations whose 
coefficients matrix is tri-diagonal.   

 
In this paper, a classic algorithm, called 

Thomas algorithm, used for the solution of set 
of algebraic equations whose coefficient matrix 
is tri-diagonal, is adopted to spreadsheets.  It is 
used to obtain solutions to a number of 
problems in fluid mechanics and heat transfer 
non-iteratively, and in some cases where the 
governing equations are non-linear via some 
iterations. 

 
 

Without needing much programming skills, or 
needing to learn specialized software, 
undergraduate students can use this approach 
and obtain the solution to many otherwise 
difficult problems easily and study the impact of 
different parameters. 

 
Analysis 

 
A tri-diagonal matrix is a matrix with nonzero 

elements only on the main diagonal and on the 
diagonals immediately above and immediately 
below the main one as shown below. Linear 
algebraic equations with tri-diagonal coefficient 
matrix frequently arise in the finite difference 
solutions. 
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Figure 1 shows a FORTRAN algorithm, 

known as the Thomas algorithm [1], provides an 
efficient method for solving such equations. It 
essentially transforms the tri-diagonal matrix 
into an upper triangular one which is then 
solved by back substitution.  

 
C PROGRAM TRIDI SOLVES A SET OF EQUATIONS  
C WITH TRIDIAGONAL COEFFICIENT MATRIX 
       SUBROUTINE TRIDI(A,B,C,X,R,N) 
       REAL A(100),B(100),C(100),R(100),X(100) 
       A(N)=A(N)/B(N) 
       R(N)=R(N)/B(N) 
       DO 1 I=2,N 
       II=-I+N+2 
       BN=1/(B(II-1)-A(II)*C(II-1)) 
       A(II-1)=A(II-1)*BN 
 1    R(II-1)=(R(II-1)-C(II-1)*R(II))*BN 
       X(1)=R(1) 
       DO 2 I=2,N 
 2    X(I)=R(I)-A(I)*X(I-1) 
       RETURN 
       END 

Figure 1. FORTRAN Code for 

 
 Tri-diagonal Matrix. 
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isual Basic Applications, VBA, has been 
TRIDI(starting cell of the column containing 

ll of the column containing array B: 

V
integrated in Excel.  Visual Basic is a high-level 
programming language that allows development 
of among other things User Defined Functions 
in Excel.  Figure 2  is the VBA implementation 
of Thomas algorithm.  The function TRIDI is an 
array function that returns N values for X1 
through XN.   Because TRIDI is an array 
function, you need to select N cells in a column 
before  you  enter  the  function.  You  also must  
press Control-Shift-Enter when entering the 
function. The syntax of TRIDI is: 

 
=
array A: Ending cell of the column containing 
array A,  
starting ce
Ending cell of the column containing array B, 
starting cell of the column containing array C: 
Ending cell of the column containing array C, 
starting cell of the column containing array X: 
Ending cell of the column containing array X) 
 

 
Option Base 1 
Function TRIDI(ByVal Ac As Range, ByVal Bc As Range, ByVal Cc As Range, _ 
ByVal Rc As Range) As Variant 
     Dim BN As Single 
     Dim i As Integer 
     Dim II As Integer 
     Dim A() As Single, B() As Single, C() As Single, R() As Single, X() As Single 
    
     N = Ac.Rows.Count 
     ReDim A(N), B(N), C(N), R(N), X(N) 
     For i = 1 To N 
        A(i) = Ac.Parent.Cells(Ac.Row + i - 1, Ac.Column) 
        B(i) = Bc.Parent.Cells(Bc.Row + i - 1, Bc.Column) 
        C(i) = Cc.Parent.Cells(Cc.Row + i - 1, Cc.Column) 
        R(i) = Rc.Parent.Cells(Rc.Row + i - 1, Rc.Column) 
    Next i 
       A(N) = A(N) / B(N) 
       R(N) = R(N) / B(N) 
    For i = 2 To N 
        II = -i + N + 2 
        BN = 1 / (B(II - 1) - A(II) * C(II - 1)) 
        A(II - 1) = A(II - 1) * BN 
        R(II - 1) = (R(II - 1) - C(II - 1) * R(II)) * BN 
    Next i 
        X(1) = R(1) 
    For i = 2 To N 
        X(i) = R(i) - A(i) * X(i - 1) 
    Next i 
       TRIDI = Application.WorksheetFunction.Transpose(X) 
End Function 

 
Figure 2. VBA Code for Solving a Tri-diagonal Matrix Using Excel. 

 
For example assume that there are 21 nodes, 

and the columns A, B, C, and D contain values 
of A, B, C, and R. To use the TRIDI function 
enter values of A, B, C and R in cells A1 
through D21.  Then select the cells in the 
column that will hold the values of X, in this 
case E1:E21 and type  
 

 
=TRIDI(A1:A21, B1:B21, C1:C21, D1:D21)  
in cell E1, then press Control-Shift-Enter 
(command Enter on Mac) to complete the array 
function. Excel places { } characters around the 
function to indicate it is an array function and 
computes the values of X and puts them in cells 
E1:E21. 
 



As described in [2] to use this function in an 
Excel workbook: 
   1. Start a new workbook. 
   2. Start VBA (Press Alt+F11) 
   3. Insert a new module (Insert > Module) 
   4.Copy and Paste the Excel User Defined 

Function (UDF).  For example all the text 
in Fig. 2.  

   5. Exit VBA (Press Alt+Q) 
   6. Use the functions (They will appear in the 

Paste Function dialog box, Shift+F3, 
under the "User Defined" category)  

 
To use a UDF in more than one workbook, 

you need to save your function as a custom add-
in: 

 
1. Save your excel file that contains your VBA 

functions as an add-in file (.xla).   
2. Load the add-in (Tools > Add-Ins...).  

 
Note that unless you provide your UDF to 

others, they would not be able to use your 
spreadsheets that use to your UDFs [2].  A 
spreadsheet containing function TRIDI can be 
downloaded from [3] and can be turned into a 
USF using the above procedure. 

 
Examples 

 
The approach is demonstrated by several 

examples.   
 

Transient heat  conduction 
 

The first example is transient conduction in a 
wall.  The nondimensional equations are: 
 
∂ 2T *

∂x*2 =
∂T *

∂t*  (2) 

x* = 0 ∂T *

∂x* = 0 (3) 

x* = 1 ∂T *

∂x* = −BiT *  (4) 

t* = 0 T * = 1 (5) 
 
Dropping the asterisks for simplicity, the finite 

difference of Eq. (2) is  

Ti+1 − 2Ti +Ti−1

Δx( )2 =
Ti −Ti

o

Δt( )
 (6) 

 
which simplifies to  
 
Ti−1 − βTi +Ti+1 = −αTi

o  (7) 
T1 −T2 = 0. (8) 
−TN−1 + 1+ BiΔx( )TN = 0 (9) 

α =
Δx( )2

Δt( )
β = 2 +α

 (10) 

 
Therefore,  
 

Ai = 1
Bi = −β
Ci = 1

Ri = −αTi
o

for 1 < i < N  (11) 

 
And 
 
B1 = 1, C1 = −1, R1 = 0
AN = −1, BN = 1+ BiΔx( ), R1 = 0

 (12) 

 
Note that A1 and CN are not used and are 

typically set to be 1.  In matrix form, the finite 
difference equations become 
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The x direction was discritized using 21 nodes 

and subroutine TRIDI was used to obtain the 
solution directly.   The spreadsheet 
implementation is shown in Appendix A. The 
solution was also obtained using the iterative 
capabilities of Excel by solving for temperature 
of node i from Eq. (7) 

 

Ti =
Ti+1 +Ti−1 +αTi

o

β
 (14) 
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and entering it in cells corresponding to nodes 2 
to N-1.   

 
The content of the cell corresponding to node 

1 is set equal to the one for node 2, to satisfy Eq. 
(3).  To satisfy Eq. (4), the content of cell 
corresponding to the temperature of node N is 
set to the content of the cell corresponding to 
node N-1, divided by 1+ BiΔx , or 

 
TN =

TN−1

1+ BiΔx
 (15) 

 
It took around 700 iterations to obtain the 

results up to t*=1, using Δt of 0.1 and 21 nodes 
in the x direction, using a convergence tolerance 
of 10-5.  The maximum difference between the 
iterative and direct solutions was less than 0.2% 
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Figure 3. Comparison of Numerical and 

Analytical Solutions. 
 
Figure 3 shows a comparison of the numerical 

and analytical solutions.  The analytical solution 
is obtained by taking the first four terms of the 
infinite series, which as expected should provide 
accurate results for Fourier number larger than 
0.2.  As can be seen, there is close agreement 
between the numerical and analytical solutions. 

 
Convective fins 
 

This method is an excellent approach for 
analysis of fins (extended surfaces). The 
governing equation for fins is given by: 

 
d
dx

kAx
dT
dx

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ − h dAs

dx
(T −T∞) = 0       (16) 

where A(x)  is the cross-sectional area of the fin 
and As (x)  is the surface area through which heat 
is transferred by convection. The boundary 
conditions are:  
 
T (0) = Tb   and  at x=L,  (insulated tip) dT /dx = 0

 
Equation (16) can be written as: 
 

d 2T
dx 2 +

1
Ax

dA
dx

dT dAs−
h 1

Ax

x

dx k dx
 (17) (T −T∞) = 0

 
The nondimensional form of equation (17) is: 
 
d 2T *

dx*2 +
1
Ax

dAx
dx

dT *

dx* −
hL2

k
1
Ax

dAs

dx* T * = 0   (18) 

 
And the finite difference form of equation (18) 

is: 
 
Ti+1

* − 2Ti
* +Ti−1

*

(Δx*)2 +
1
Ax

dAx

dx*
Ti+1

* −Ti−1
*

2Δx
−

hL2

k
1
Ax

dAs

dx* Ti
* = 0

 (19) 

Or 
AiTi−1

* + BiTi
* + CiTi+1

* = Ri  (20) 
 
where 
 

Ai =
1

(Δx*)2 −
1
Ax

dAx

dx*
1

2Δx*  (21) 

Bi = −
hL2

k
1
Ax

dAs

dx* +
2

(Δx*)2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (22) 

Ci =
1

(Δx*)2 +
1
Ax

dAx

dx*
1

2Δx*  (23) 

 
and 
 

Ri = 0 (24) 
 
The boundary conditions in finite difference 
form are: 
 
T1

* = 1.   (25) 
 
and    
 
TN−1

* = TN
*  (26) 
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where N is the total number of nodes (the last 
node). 

 
Hence, for the first and last nodes we have: 
 
A1 = 1, , C , and  (for the base) (27) B1 = 1 1 = 0 R1 = 1

AN = 1, BN = −1, CN = 0, and RN = 0  (for the tip) (28) 
 
This model is used to analyze straight, circular 

and triangular convective fins.  For a straight 
fin, Ax is constant.  Therefore 

 
Ai =

1
(Δx*)2  (29) 

Bi = − M +
2

(Δx*)2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (30) 

Ci =
1

(Δx*)2  (31) 

Where M =
hL2

k
p
A

 

 
The dimensionless temperature distribution for 
this fin based on the present approach and that 
of exact solution are plotted in Figure 4. As 
shown in this figure the results of temperature 
distribution based on the present approach and 
that of exact solution are almost identical 
(relative error less than 0.5%). 

 
For circular fins A(r) = 2πrtand As = 2 πr 2 − πri

2( ). 
Note that for circular fins x is replaced by r. The 
tri-diagonal matrix elements for circular fins 
become: 

 

Ai =
1

(Δr*)2 −
1

2r*Δr*  (32) 

Bi = − M +
2

(Δr*)2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   (33) 

Ai =
1

(Δr*)2 +
1

2r*Δr*              (34) 

 

Where M =
hL2

k
2
t
  

 
The dimensionless temperature distributions 

along the radial direction are shown in Figure 5.   
 
The results are for M=1.33 and for an annular 

fin whose outer radius is twice its inner one.  As 
shown  in  this  figure  the  resulting temperature 
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Figure 4.  Dimensionless temperature  
distribution for a rectangular straight fin. 

 
distribution based on the present approach and 
that of exact solution are very close (less than 
1% relative error). 
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Figure 5. Dimensionless temperature 

distributions for a circular fin. 
 
The next fin considered is a triangular fin 

shown in Fig. 6.  The governing differential 
equation for the temperature distribution is 
given by [4]: 

 

x* d 2T *

dx*2 +
dT *

dx* − MT * = 0 (35) 

 

where M =
2hL2

kb
 (36) 

 
The finite difference form of the triangular fin 

equation is: 
 
AiTi−1

* + BiTi
* + CiTi+1

* = Ri  (37) 
 

COMPUTERS IN EDUCATION JOURNAL 33 



Figure 6. Schematics of a triangular fin. 
 
where  
 

Ai =
xi

*

Δx*2 −
1

2Δx*  (38) 

Bi = −
2xi

*

Δx*2 + M
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 (39) 

Ci =
xi

*

Δx*2 +
1

2Δx*  (40) 

Ri = 0 (41) 
 
The exact solution for triangular fins as 

reported in the literature [4,5] is given by: 
 

T * =
I0 (2 Mx* )
I0 (2 M )

 (42) 

 
A finite, unspecified temperature is used for 

the tip boundary condition. The cross-sectional 
area of the triangular fin is zero at its tip; hence 
the heat flux at the tip is zero.  Therefore, the 
actual boundary condition must be zero heat 
flux at the tip.  The heat flux at the tip predicted 
by Equation (39) is finite.  This is not a 
physically realistic solution and appears to have 
been used due to its ease in obtaining an 
analytical solution.  

 
For the present numerical approach the 

physically realistic boundary condition of zero 
heat flux at the tip, i.e., dT , is used. The 
finite difference form of this boundary condition 
leads toT .  

/dx = 0

* = T *
1 2

 
The resulting temperature distributions based 

on the present approach (with insulated tip) and 

exact solution (with finite temperature at the tip) 
are shown in Figure 7.  As shown in Figure 7 
there is close agreement between the results of 
both methods.  

 
This approach can be used to model a wide 

range of extended surfaces with convection. 
Two recent publications, [6] and [7], show 
applications of numerical methods for analyzing 
various fins, which resulted in equations that 
can be easily, solved using the present approach.  
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Figure 7. Dimensionless temperature distributions 
for a triangular fin. 

 
Radiation fins 

 
A more challenging problem is radiation fins, 

which result in nonlinear differential equations. 
An example of such fins is given in [8].  The 
resulting differential equation for a rectangular 
radiation fin is given by (see [8]): 

 
d 2T
dx 2 −

εσ
kw

T 4 −
αG
εσ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = 0  (43) 

 
Where, ε  and α  are total surface emissivity and 
absorptivity, G  is the external irradiation 
(typically solar irradiation), k  is the fin 
conductivity and  is the thickness of the fin. 
The equilibrium temperature that a surface 
would achieve if it is insulated and is subject to 
irradiation G  is given by: 

w

 
Ts

4 =
αG
εσ

 (44) 

 

x 

L 

2b 
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Using the equilibrium temperature and 
dimensionless variables: 

 

T * =
T
Tb

, Ts
* =

Ts
Tb

, x* =
x
L

 and λ =
εσTb

4L2

kw
 (45) 

 
leads to the following differential equation  
d 2T *

dx*2 − λ (T *4
−Ts

*4
) = 0  (46) 

 
The boundary conditions to be satisfied are: 
 
T * = 0 at x* = 0 (47) 
dT *

dx* = 0 at x* = 1 (48) 

 
To solve this problem using the present 

approach the governing equation is linearized as  
 
d 2T *

dx*2 − hr (T * −Ts
*) = 0  (49) 

where  
hr = λ (T *2

+Ts
*2

)(T * +Ts
*)   (50) 

 
is the radiative heat transfer coefficient. This 
heat transfer coefficient is a function of fin 
temperature. The finite difference form of the 
above equation is given by: 
 

AiTi−1
* + BiTi

* + CiTi+1
* = Ri  (51) 

 
Where 
 
Ai =

1
(Δx*)2  (52) 

 

Bi = −
2

(Δx*)2 + hri

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (53) 

 
Ci =

1
(Δx*)2 , (54) 

 
 
Ri = −hri

Ts
* (55) 

 
This case was solved by taking Δx* = 0.01

ir
h

T * = 0.5

 and 
the initial value of is estimated based on 

 at all locations and fixed values of λ  

andTs
*

ir
h

ir
h

dT *

dx*

. The problem can be easily solved using 
the TRIDI function to obtain the temperature 
distribution. Then  values are recalculated 
using the new temperature distributions. The 
equations are solved based on the revised  . 
This can be done by simply copy and paste of 
the cell for the initial temperature calculation. 
The cells can be copied and pasted a few times 

until the temperature gradient, i.e.  at the 

base, between two consecutive revisions of 
becomes negligibly small. It should be noted 

that for 
ir

h
λ ≤ 1.5

rh
 it takes about four revisions of 

i
to get temperature gradient between two 

consecutive calculations identical to five 
decimal places. For larger values of λ  about ten 
revisions of temperatures are needed. 

 
The efficiency of radiative fins is expressed by 

[8]: 
η =

(εσ L
q

T0
4 −αG)

=
q

εσLT0
4 (1−Ts

4 )
 (56) 

 
Substituting for q  and making it dimensionless, 
the above equation becomes: 
 

η = −
λ

1
(1−Ts

4 )
dT
dx

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
ξ = 0

 (57) 

 
Figure 8 shows a graph of radiative fin 

efficiencies versus λ  with Ts as parameter. This 
graph is produced based on the present approach 
and it is a replica of what is given in [8].  The 
graph given in heat transfer textbook by 
Chapman [8] is based on a relatively complex 
numerical approach given in a NASA report [9].  

 
Conclusion 

 
In this paper, it is shown that the spreadsheets 

with a tri-diagonal matrix inversion module can 
be used to obtain solutions to a wide range of 
heat transfer problems.  Use of this method does 
not require programming skills, or to learn 
specialized software.  In most Thermal/Fluids 
courses the emphasis is on the physical concepts 
or  numerical  models,  not  programming skills. 
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9. Lieblein, S., Analysis of Temperature 
Distribution and Radiant Heat Transfer Along 
Rectangular Fin of Uniform Thickness, NASA 
Tech. Note D-196, Washington, D.C., Nov. 
1959. 
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Figure 8. Efficiency of radiative fin of uniform 
thickness versus different values of 
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λ with θ sas 
parameter. 

 
The students can use this approach to obtain the 
solution and study the impact of different 
parameters. 
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Appendix A 
 

Table A1.
 A B C D E F G H I 

1 N 21  TRIDI Solution     

2 dx 0.05  I A B C R R 
3 dt 0.10  1 0 1 -1 0.00000 0.00000 
4 alfa 0.025  2 1 -2.025 1 -0.02322 -0.02031 
5 Bi 10  3 1 -2.025 1 -0.02317 -0.02023 
6 beta -2.025  4 1 -2.025 1 -0.02308 -0.02009 
  

22    20 1 -2.025 1 -0.025 -0.00845 
23    21 -1 1.5 1 0 0 
24          
25       t 0 0.1 
26       x T T 
27    1   0 1 0.9287 
28    2   0.05 1 0.9287 
29    3   0.1 1 0.9269 
  

46    20   0.95 1 0.3380 
47    21   1 1 0.2253 
48          

 
Table A2 Formulas in the worksheet. 

 A B C D E F G H I 

1 N =21  TRIDI Solution     
2 dx =1/(N-1)  I A B C R R 
3 dt 0.1  1 0 1 -1 0 0 
4 alfa =dx^2/dt  2 1 =beta 1 =-alfa*H28 =-alfa*I28 
5 Bi =10  3 1 =beta 1 =-alfa*H29 =-alfa*I29 
6 beta =-2-alfa  4 1 =beta 1 =-alfa*H30 =-alfa*I30 
      

22    20 1 =beta 1 =-alfa*H46 =-alfa*I46 
23    21 -1 =1+Bi*dx 1 0 0 
24          
25        t 0 =H25+dt 
26        x T T 
27    =D3   =(D27-1)*dx 1 =TRIDI($E3:$E23,$F3:$F23,$G3:$G23,H3:H23) 
28    =D4   =(D28-1)*dx 1 =TRIDI($E3:$E23,$F3:$F23,$G3:$G23,H3:H23) 
29    =D5   =(D29-1)*dx 1 =TRIDI($E3:$E23,$F3:$F23,$G3:$G23,H3:H23) 

  
 

46    =D22   =(D46-1)*dx 1 =TRIDI($E3:$E23,$F3:$F23,$G3:$G23,H3:H23) 
47    =D23   =(D47-1)*dx 1 =TRIDI($E3:$E23,$F3:$F23,$G3:$G23,H3:H23) 
48           
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