
INTEGRATION OF COMPUTER-BASED PROBLEM SOLVING
INTO ENGINEERING CURRICULA

Dianne Raubenheimer, Jeff Joines, Amy Craig Rebecca Brent
 North Carolina State University Education Designs, Inc.

Abstract

The primary objectives of this engineering

project are (1) to examine how to develop
students’ problem solving and computational
skills early in their program of study and (2) to
further enhance these skills by building upon
critical computing concepts semester after
semester. The project is a component of NC
State University’s quality enhancement plan,
which focuses on the use of technology in
enhancing student learning. The project stems
from new introductory computer-based
modeling courses that were created in two
engineering departments, and has expanded to
include other departments. We give an
overview of the project, provide an example of
how a problem is modeled and broken apart,
present some assessment results, and discuss the
emerging lessons being learned.

Introduction

Many engineering curricula around the
country are re-evaluating their introductory
computer programming requirement. At our
university, several departments have changed
from the traditional Java or C++ course to
something more applicable to their discipline.
Realizing that the standard introductory
programming course no longer appropriately
complements the education of systems
engineers, three departments (Textile
Engineering (TE), Industrial and Systems
Engineering (ISE), and Chemical and
Bimolecular Engineering (CBE)) looked at
similar approaches to developing or revising
existing courses to help students with
algorithmic thinking and problem solving using
computing.

These courses aim to educate students to
model problems relevant to their specific
engineering discipline, solve these problems
using modeling tools (including a range of
software platforms, such as Excel with VBA),
and then to analyze the solutions through
decision support (i.e., to become “power users”
not programmers).

Other departments in the College of

Engineering have expressed interest in
reviewing their introductory computer
programming course requirement and
implementing a course similar to those already
developed in TE, ISE and CBE. This is the
‘scale-out’ portion of our project, as we seek to
expand the work and develop similar
introductory courses in other engineering
disciplines. The second part of the project is the
‘scale-up’ portion, which entails linking
computational processes and skills across
courses in the curriculum, that is, developing a
computational thread at successive levels in
program curricula. We acknowledge that not
every course lends itself to the use of
computational tools, but there are courses at
successive curriculum levels where it is
appropriate and beneficial to student learning
for computational tools to be utilized and
problem solving skills to be reinforced. Figure 1
schematically represents these two parts of our
project, the ‘scale out’ and ‘scale up’
components.

This project is funded out of the Provost’s

office and is part of the university Quality
Enhancement Plan (QEP) called Learning in a
Technology Rich Environment (LITRE)[1],
which focuses on the role of technology in
enhancing student learning. This project is one

34 COMPUTERS IN EDUCATION JOURNAL

Figure 1: Schematic representation of the implementation process.

of three large technology projects, with the
potential for wide-reaching impact across the
campus, selected for support in the phase II part
of the QEP (July 2007 – July 2009).

This paper provides detail of the introductory

courses in three departments (TE, ISE, CBE),
including an example from TE showing how a
problem is modeled, and then describes how the
computational tools are being integrated into
upper division courses in these departments.
Thereafter, selected assessment results are
presented. We conclude by exploring some of
the lessons we are learning from the
implementation of this project.

Teaching Modeling and Problem Solving

Textile Engineering and Industrial and
Systems Engineering: A new course

For TE and ISE, a change was needed from the
existing Java programming course because
subsequent classes were not using Java and
most of the students use Excel and Access to
solve problems once they enter the workforce
(see Joines, Roberts & Raubenheimer[2] for
more reasons). Over the past two years, Jeff
Joines and Steve Roberts developed and taught
a new Computer-Based Modeling for Engineers
course (TE/ISE 110) emphasizing modeling
using Excel and VBA. While the design of the

course is fundamental to its creation, the
teaching and delivery of the course will
determine the ultimate success. This is one of
the first engineering courses that students take
during their college careers, so it is important to
engage the students in learning about their
discipline. However this engagement must be
done in a way that permits multiple instructors
and multiple sections to be taught to offer
uniformity in computing experiences. One way
to engage the student is using in-class
assignments and exercises. We refer to these as
“in-class labs” to convey the laboratory nature
of these exercises.

Essentially, the course (TE/ISE 110) revolves

around the labs with very little formal lecture
time. Each lab contains three to five
problems/case studies that need to be modeled.
An occasional 5-10 minute introduction is given
to motivate the students to solve the problem,
but even the introductions are punctuated with
examples that the students should or could
implement and run. Lectures are more
spontaneous since they arise from “teaching
moments” which are instances during class
when students realize they have a problem and
some commentary from the instructor is needed.
At those times, students are most open to
listening since they have an immediate use for
the information. This approach might be called
“just-in-time” lecturing. The students are given

COMPUTERS IN EDUCATION JOURNAL 35

small tasks that will ultimately lead to solving
the entire problem in the case study. For the in-
class lab to be effective, it needs to:

1. Occupy the students during the entire two-

hour period,
2. Challenge the students to critically think

about their responses,
3. Produce questions about the modeling tool

or approach,
4. Allow the students to seek help if they have

a problem from the teacher, from a teaching
assistant, or from another student, and

5. Allow some flexibility for the instructor to
use “teaching moments” to elaborate on
specific issues.

Students are held accountable by having to
answer a series of questions and are required to
turn in a subset to be graded. Finally, the
students are given homework and projects that
are based on real data to test their new-found
problem solving skills. Joines, Roberts &
Raubenheimer[2] explain in detail the
development and implementation of the new
computer-based modeling class (TE/ISE 110)
including teaching with tablet PCs, etc.

Components of each lab:

• Beginning portion of the lab gives an
overview of the problems and topics of the
day.

• Students are often instructed to download
the spreadsheet for the day from the website,
which may have data, code, etc. already
available.

• Each part of the in-class lab starts with a
background to the problem, followed by a
series of steps that have to be performed,
with more explanations when needed.

• Intermixed with each of the steps is a series
of questions that the students have to
answer.

• A subset of those questions are repeated on
the front page, which has to be filled out and
turned in at the end of the period.

One of the main reasons we switched to this
new course was to enhance the students’ ability
to think critically, develop algorithmic solutions
to problems (flow chart out a solution), and
develop general problem solving skills. One of
the approaches we use to teach engineering
problem solving methods is the divide and
conquer technique (i.e., breaking up the problem
into its smallest elements and solving each of
the elements (which is easier) and then
reassembling the elements to solve the original
problem). The following example illustrates
how we teach the divide and conquer technique.

Modeling case study example

The following example is the third of five case
studies in the second in-class lab (see Joines,
Roberts & Raubenheimer[2] for more
information). This particular lab deals with
modeling in Excel emphasizing the use of
named ranges and implementing engineering
equations. The students have just learned about
the importance of named ranges and how to
create them.

Part 3: Can we predict the value? (Breaking a
Problem Apart)

Electronic kits are assembled from various
components. The number of labor hours needed
to assemble the kit is needed to determine a cost
for a kit. However, each kit is different and so
the number of hours cannot be directly
determined. The company has kept some
records on the number of components and the
assembly hours required which are given in the
worksheet (“Part 3”).

Background:

A simple model of the effect of one variable,
say x, on another, say y, is a simple linear
equation:

y = mx + b.

Here y is the dependent variable and x is the

independent variable. The parameter “b” is the

36 COMPUTERS IN EDUCATION JOURNAL

intercept on the y-axis and parameter “m” is the
slope. Graphically, the relationship is:

If that relationship appears appropriate, the

question is how to estimate the parameters “m”
and “b”.

Formulas:

Fortunately, there are statistical methods for
this problem called “linear regression” (which
you will learn about in statistics classes). The
results provide an estimate of m and b from the
following equations:

The ix and the iy are the observations of the

independent and dependent variables,
respectively. The X and the Y are the
averages of the respective variables. Obviously,
Excel has functions that we will use later to
determine the slope and intercept. As an
engineer, you should break a problem into
simpler portions and solve each portion
separately, which reduces the chance of
introducing errors into the final solution (we
sometimes call this a divide and conquer
strategy). Implementing the above equation all
in one cell would not be easy to do correctly.

An Aside: Are you familiar with the Σ sign?

It is called the “summation sign” and it means
that you want to sum a series. Here are some
examples:

10

1

1 2 3 ... 10
i

i
=

= + + + +∑

4

1 2 3
1

j
j

4x x x x x
=

= + + +∑

3 3 3 3

3 4 5
3

...
n

i n
i

z z z z z
=

3= + + + +∑

100

0 1 2 100

0
2 2 2 2 ... 2m

m=

= + + + +∑

3 2

1 1 1 2 2 1 2 2 3 1 3 2
1 1

i j
i j

x y x y x y x y x y x y x y
= =

= + + + + +∑∑

Sometimes the limits of the sum are implied

by the applications, such as xyΣ , which means
to sum the product x times y over all their
values. You’ll see examples below.

Step 1: Go to the worksheet named “Part 3”. In

this worksheet, the computational
framework has been created, and it also
includes the data on the number of
components (x) and the labor hours (y).
Copy the formulas for the linear
regression from the “Formulas”
worksheet.

Step 2: Select all of the x and y values and name
the columns x and y.

Step 3: Next we will compute xy and x2 for each

of the values in columns of D and E as
labeled using the named ranges (x and
y). B

Question 1: In row 2, what did you get for:
x*y: _______ and x^2 ______?

Step 4: Now double click the fill handle to copy
formula down the D2:E2 to row 26.
Name these data ranges using Insert
Name Create. (Note the name of the
x2 column.)

Step 5: Compute n from COUNT() and the
various sums using SUM(). You should
use the named ranges to minimize errors

y - axis

y-intercept = b

x - axis

slope =m

COMPUTERS IN EDUCATION JOURNAL 37

Step 6: Using Insert Name Create to add

names in their associated cells for
A29:E29. Notice the names include the
symbols as well.

Step 7: In C31 and C32, compute the average of
x and y using the names just created in
the previous two steps. Be sure to add
names for these cells.

Step 8: Using the names, create Excel

expressions in C34 and C35 for “m” and
“b” from the formulas given for linear
regression.

Question 2: What did you get for m:
______________ and b: ______________?

Step 9: Name these cells as “m” and “b”.

Question 3: Write down the complete linear

equation that calculates the expected hours (y)
for a given number of components (x):

Question 4: If a kit requires 86 components,

how many hours do you expect the assembly to
take? _______________

Throughout the lab, students will ask questions
that become teaching moments. Also, students
are not asked to do all nine steps at once. For
this lab, we pace the exercise by asking them to
perform a couple of steps which gives the TA,
instructor, as well as neighbors, time to help.
Then, the students are asked for the answers to
get them to interact and keep everyone on pace.
The students are amazed that very few errors are
introduced since we calculated each individual
element (e.g., average of the x values or the sum
of the x*y values) and verified these were
correct and made sense before trying to
implement the entire equation for the slope.
The other thing to note is how using named
ranges reduces errors in implementing
complicated equations like the slope equation.
The following table depicts two correct

solutions to implementing the slope as an Excel
expression.

=(Σ_xy-n*xAvg*yAvg)/(Σ_x2-
n*xAvg^2)

Slope
equation
using named
ranges

=(D29-A29*C31*C32)/(E29-
A29*(C32^2)

Slope
equation
without
named
ranges

The first one utilizes the named ranges that

were defined. It is very easy to verify that we
implemented it correctly by comparing it to the
actual equation from the lab. Contrast this with
the second more common way which does not
use named ranges. One is not sure exactly what
cell C31 refers too. A person could have easily
entered the wrong cell (e.g, A30 instead of A29)
or clicked on the wrong cell when entering the
expression. Just seeing cell references makes it
difficult to verify the correct equation compared
to the first one which looks like the actual
equation.

Chemical and Biomolecular Engineering
(CBE): An existing course

Unlike TE and ISE, CBE majors were no
longer required to take an introductory
programming course. However, CBE was
concerned that the students were not getting
practice in algorithmic thinking, something Jan
Genzer, Professor of Chemical and
Biomolecular Engineering, considered a chief
benefit of programming. Like Joines, Roberts
& Raubenheimer[2], he is not in favor of
programming for its own sake but rather
programming as a tool for problem solving.
After talking with alumni, he came to the same
conclusion that most of them were using Excel
as the primary tool for numerical work as
opposed to Matlab or process simulation
packages like Aspen or Super Pro. He decided
to use Excel with VBA in CHE 225 (a
numerical methods course) as a way to get

n:___ Σy:___ Σx:___ Σxy:___ Σx2: __

38 COMPUTERS IN EDUCATION JOURNAL

students thinking algorithmically and to advance
their problem solving skills.

Since CBE did not have a course dedicated to

modeling like TE/ISE 110, the programming
was integrated into an existing course. Owing to
time constraints (i.e., they still have to teach
numerical methods), they developed a
booklet/CD tutorial called Visual Basic for
Applications (VBA) in Microsoft Excel for
Chemical Engineers.[3] The CD tutorial takes
the students through a series of exercises to
teach them basic concepts and tools they will
need as they use Excel with VBA for problem
solving. Several sample spreadsheets can be
opened and used, and there are notes and
activities to help students learn specific tools.
The chapters are:

I. Introduction to Excel
II. Programming and Basic Macros
III. Direct VBA Programming and User

 Forms
IV. Numerical Methods and VBA
V. Error Checking and Debugging
VI. Applications and Engineering Problems
VII. Notes on Learning Resources

In CHE 225, students have 12 sessions where
they bring their laptops to class and use them in
structured activities around Excel with VBA.
Often the students have downloaded a
spreadsheet that may be partially completed to
use in the session. This approach is similar to
the in-class labs of TE/ISE110, but a little less
structured. These classes are where Dr. Genzer
stresses algorithmic thinking, flow charts the
steps in problem solving, and helps students to
think through what needs to be programmed.
Students are told that it is not important that
they know all the syntax. Instead they are
encouraged to utilize the resources in Excel and
the web. What is important is that the students
understand how to approach problem solving
using Excel and VBA as tools. During class,
students often collaborate with one another and
he circulates to help them as they're working
through the programming. He frequently pulls
the class together to get them to think about

what they are doing, to evaluate whether their
answers make sense, and to predict what will
happen when they take a certain step. At the end
of the semester, students complete a project
using Excel with VBA (e.g., build a unit
conversion form that will convert all kinds of
units from English to Metric, etc.).

As part of the plan to expand this learning,

Student Owned Computing (SOC) at the
College of Engineering hired several students to
revise and update the material for CBE 225.
However, the major undertaking was to expand
the example uses of Excel with VBA within the
curricula for the introductory CBE course (CHE
205), as well as the junior level courses that
follow CHE 225. Now, CHE 205 students are
introduced to the basics of Excel in their
problem sessions led by TA's.

We have been working with the group of

faculty who teach CHE 225 regularly to try to
reach consensus about what tools will be taught
in the class. Previously, Dr. Genzer was the
only one using VBA. Other instructors used
MatLab and Aspen. Now all instructors are
committed to using Excel with VBA and
introducing MatLab in the class. Consensus
about consistent coverage for all sections has
not yet been reached, but faculty have been
talking about what they are doing and are
moving in the direction of more consistency.

Creating a Computational Thread

through Successive Curricula

A second focus of this project is to integrate
computational tools for modeling and problem
solving beyond the introductory courses, into
upper division courses. This component seeks to
develop a “computing thread” within each
targeted department that promotes incorporation
of a set of computational tools and methods
throughout the core department curriculum.

As described in a previous section of the

paper, the Departments of Chemical and
Biomolecular Engineering (CBE), Industrial and
Systems Engineering (ISE), and Textile

COMPUTERS IN EDUCATION JOURNAL 39

40 COMPUTERS IN EDUCATION JOURNAL

Engineering (TE) have each established a strong
foundation of computing in their introductory
courses. In CBE students are introduced to
spreadsheeting for problem solving (using
Excel) in their first course in the major,
followed by a course in numerical methods
where they learn MatLab and expand their use
of Excel to include Visual Basic for
Applications (VBA) programming. The
emphasis in the second course is on algorithmic
thinking and a systematic approach to problem
solving. In ISE and TE, students take an
introductory course in which spreadsheeting and
VBA are used extensively in the context of
solving both engineering problems and
problems in everyday life such as investment
planning and queuing theory.

A deficiency in all three departments is that

students receive this intensive introduction to
computational tools in their second year and
then rarely see the tools again until the senior
capstone course. With this much of a time gap
between computer applications, students forget
what they have learned and are unable to expand
their computational skills to address the more
complex problems they encounter in the
advanced courses. Moreover, the inclusion of
computational tools in a course can depend
heavily on who is teaching, so that students’
exposure to computers can vary considerably
from one year to another.

In this project, we are working on two levels to

change this situation. First, we want to expand
the use of computational tools into most upper
level courses on a course-by-course basis. In
addition, we want to identify a sequence of
courses in each department that includes
extensive use of the tools, a “computing thread”
that promotes student computing skill
development through the curriculum. These two
levels go hand-in-hand. Faculty can initially
identify courses that incorporate computer tools
and the interactions and repetitive use of
specific tools in subsequent years will lead to
identification of the thread and strengthen its
coherence.

Chemical and Biomolecular Engineering

Each department presents unique obstacles to
implementation of this portion of the project. In
CBE, there is a special challenge in that faculty
teach courses in rotation, with as many as six
different faculty members teaching a particular
course over a three-year period. It is difficult to
get agreement among those faculty members on
the specific computer tools to be incorporated
into the course and for them to gain the required
skills to teach the tools when they teach the
course so infrequently.

The courses listed in Table 1 have been

identified as the CBE Computing Thread. They
either now include a significant computational
skill element or they are slated to have one.

In their junior year, students take a two-

semester transport processes sequence and a
two-semester thermodynamics sequence. These
four courses had almost no computer
applications incorporated, and so they became
the focus of most of our effort in CBE. After
meeting in groups and individually with faculty
teaching those courses, we decided to set up an
online faculty repository of relevant computer
problems and their solutions. The website is
password-protected and available only to the
faculty. Our rationale was that faculty
unfamiliar with a particular computer tool are
unlikely to have the inclination or the time to
develop the new examples and problems that
they will need to use it in their courses, while if
they have previously verified problems and
solutions to assign they will be much more
likely to use the tool. In addition, the website
should facilitate communication and sharing of
problems among all faculty teaching a specific
course, which will expand the repository. For
example, someone teaching thermodynamics
one semester may develop spreadsheet problems
and examples and upload them to the website to
be used by their colleagues in subsequent
semesters. When that faculty member comes
back to teach the course several years later,
he/she will find an expanded collection of

Table 1. CBE Computing Thread.

FALL SPRING
Sophomore Courses Sophomore Courses

CHE 205: Chemical Process Principles CHE 225: Introduction to Chemical Engineering
Analysis

Junior Courses Junior Courses

CHE 311: Transport Processes I

CHE 312: Transport Processes II

CHE 315: Chemical Process Thermodynamics CHE 316: Thermodynamics of Chemical and Phase
Equilibria

 CHE 330: Chemical Engineering Lab I

Senior Courses Senior Courses
CHE 450: Chemical Engineering Design I CHE 451: Chemical Engineering Design II

CHE 446: Design & Analysis of Chemical Reactors CHE 331: Chemical Engineering Lab II

problems to use. Finally, this approach should
help to provide continuity from semester to
semester.

For each course the following items were
collected:

• Links to relevant online resources such as

simulations and java applets that illustrate
key course concepts

• Computer problems and solutions developed
by a student team in collaboration with
faculty. For each problem statement and
solution, there are supporting materials
including learning objectives and teaching
suggestions.

• Other problems, including sets of
spreadsheets developed by Brice Carnahan,
Mark Burns, and Philip Savage of the
University of Michigan and distributed at
the 2007 CHE Summer School sponsored by
the Chemical Engineering Division of
ASEE. Most of these spreadsheets are set
up as tools to solve a class of problems and
are therefore useful in many different
situations and can be used repeatedly by
students in solving different problems.

In the fall 2007 semester we met regularly

with faculty teaching the courses in the
Computing Thread to offer assistance, keep
them informed about additions to the resource
repository, and solicit ideas for actions we could
take to help them incorporate more problems
using computational tools. This was preceded
by gaining necessary support from the
department head and the associate department
head. We also met with the entire CBE
department faculty at the end of the fall 2007
semester to overview the project and encourage
full departmental support of the curriculum
changes. Future plans are to continue adding
problems to the repository and to develop an
Excel-VBA tutorial and problem sample set to
help students gain the computing skills they will
need to solve the relatively complex problems
they will encounter in the transport and
thermodynamics sequences.

ISE and TE Departments

In both the ISE and TE departments, a smaller
number of faculty teach the same or similar
courses each year, providing greater continuity
in content from semester to semester. Two well-
respected senior faculty members in ISE and TE
developed the aforementioned introductory

COMPUTERS IN EDUCATION JOURNAL 41

computer-based modeling course jointly and
have continued to work together to share ideas.
They have each served as champions of the
project and mentors to their colleagues. Several
other ISE faculty teaching related courses have
been enthusiastic about working together to
ensure students see the connections between
particular courses and feel more confident in
their computational abilities. The TE and ISE
Computing Threads are shown in Table 2 and
Table 3.

We have met individually with faculty

teaching courses within the ISE and TE
Computing Threads intermittently since the start
of the project. In ISE, project and departmental
funds were used to hire student workers to help
faculty develop problems and activities. Some
problems developed to date include the use of
spreadsheets to create break-even analysis
templates, using VBA in advanced database
applications, and converting MatLab code for
modeling production systems problems to VBA.
We maintained regular contact with the students
and faculty during the development process to
provide pedagogical and technical support.
During the fall semester we met with the entire
faculty of TE and ISE to review the project
status and garner support and ideas from the
faculty as a whole, and have also elicited
support from departmental heads. Future plans
include establishing more connections between
courses in the curriculum to strengthen the
Computing Thread and more assessment of the
impact of computational thinking on students’
problem solving abilities.

Assessment Activities

The project has four main research questions,
each being assessed using different instruments.

Overall Research Questions

1. What are student approaches to modeling

and problem solving and how do they
change over time as students move into

upper division courses and use programming
and computational tools to model and solve
discipline specific problems?

Instrumentation: (a) Student surveys
assessing attitudes and confidence in
specific course outcomes, (b) survey
questions about modeling and problem
solving, (c) specially developed, common
problem solving tasks, (d) student
reflections about how they go about solving
tasks, and (e) course-related samples of
student work. The survey data is being
compared to students completing these same
or similar surveys in subsequent semesters,
to establish trends in self-confidence as
students are expose d to the new course
sequences. The problem solving tasks and
reflections are being compared to students in
upper division courses who have not been
through the new course sequences, as well
as to do longitudinal tracking of problem
solving abilities of students who do
experience the new course sequences.

2. What characteristics (e.g. gender, GPA) do
the learners bring to problem solving
processes that assist or hinder their success
as modelers and problem solvers?

Instrumentation: (a) Student profile data
(GPA, gender, etc.), and (b) student surveys,
e.g. the Revised Study Process
Questionnaire, and a self-efficacy & beliefs
about the course survey. These data will be
related to data on student problem solving,
student performance in courses and other
student surveys.

3. Does student performance in the discipline

improve with the new approaches to
teaching modeling and problem solving?

Instrumentation: (a) Course specific end of
semester GPA comparisons to the same
courses in previous years.

42 COMPUTERS IN EDUCATION JOURNAL

Table 2. ISE Computing Thread.

FALL SPRING
Sophomore Courses Sophomore Courses
ISE 110: Computer-Based Modeling for
Engineers

ISE 216: Manufacturing Engineering
Practicum

Junior Courses Junior Courses
ISE 361: Deterministic Models in Industrial
Engineering

ISE 401: Stochastic Models in Industrial
Engineering

ISE 441: Introduction to Simulation ISE 443: Quality Control

Senior Courses Senior Courses
ISE 453: Production System Design ISE 417: Manufacturing Engineering III:

Computer Integrated Manufacturing
 ISE 498: Senior Design Project

Table 3. TE Computing Thread.

FALL SPRING
Sophomore Courses Sophomore Courses
TE 110: Computer-Based Modeling for
Engineers

TE 201: Textile Engineering Science –
Fibers

TE 200: Introduction to Polymer Science
and Engineering

TE 205: Analog and Digital Circuits

Junior Courses Junior Courses
TE 301: Engineering Textiles Structures I:
Linear Assemblies

TE 302: Textile Manufacturing Processes
and Assemblies II

TE 303: Thermodynamics for Textile
Engineers

TE 440: Textile Information Systems
Design

Senior Courses Senior Courses
TE 401: Textile Engineering Design I

TE 402: Textile Engineering Design II

TE 404: Textile Engineering Quality
Improvement

4. How do the various faculty involved in
the project use technology inside and
outside of the class to enhance student
learning?

Instrumentation: (a) Baseline faculty survey,
(b) field notes of research participants, and
(c) faculty interviews.

COMPUTERS IN EDUCATION JOURNAL 43

Some assessment results

Because of the large scope of the assessment
activities, only selected assessment results will
be shared in this paper, including some of the
survey results and findings from the problem
solving tasks.

Surveys

We have used surveys to assess student’s

attitudes towards the new courses and their
confidence levels in using various
computational tools. In the TE and ISE 110
courses, data has been gathered each semester
since fall 2006. This data is used for faculty to
monitor the student’s skill levels in successive
semesters, and to make changes where there are
perceived areas of weakness. For instance,
Table 4 shows student ratings of their
confidence in using various VBA functions in
fall 2006 and again in fall 2007. It was noted in
fall 2006 that there were some areas where
students had not adequately grasped the skills
(such as creating loops, writing event handlers,
and developing decision support systems). Thus,
more attention was given to these areas in
subsequent course offerings, resulting in
increased confidence levels among the 2007
group.

In the department of Chemical and

Biomolecular Engineering, baseline data was

gathered as students entered the CHE 225
course in spring 2007 and again at the end of the
spring semester, just prior to final exams.

Table 5 shows that for CHE 225,

• There was a significant increase on 8/10

Excel dimensions by the end of the course.
(The other two dimensions were already
high at the beginning of the course).

• There was a significant increase on 10/10
VBA dimensions by the end of the course.

This shows that students had developed the
requisite computational skills by the end of the
one semester in CHE 225.

In spring 2007 the same survey was

administered to five sections of 300 level
courses. All the students in these sections would
have taken CHE 225 during the previous year,
most of them in the spring and some in the
summer. The results showed that,

• All groups were significantly less confident

on all VBA dimensions than students at the
end of CHE 225.

• There were also significant differences on a
few Excel dimensions in comparison to the
CHE 225 students.

Table 4. Results of student confidence survey from fall 2006 and 2007.

TE 110 Fall 2006
N = 24

TE 110 Fall
2007

N = 20
Rate your confidence with VBA
(1 = not confident, 2 = somewhat confident, 3 = confident,

4 = very confident)

Mean

Mean

14. Recording macros 3.83 3.95
15. Using Excel objects, methods and properties 3.33 3.65
16. Writing functions and subroutines 3.13 3.37
17. Defining variables of various types 3.25 3.50
18. Making assignments 3.13 3.25
19. Creating loops 2.83 3.25
20. Using 'ifs' and 'cases' 3.17 3.45
21. Creating your own forms and controls 3.50 3.55
22. Writing event handlers 2.71 3.15
23. Developing decision support systems 2.75 2.90

44 COMPUTERS IN EDUCATION JOURNAL

Table 5. Comparison of student ratings at the beginning and end
of the semester in CHE 225.

1 = not confident, 2 =
somewhat confident, 3 =
confident, 4 = very confident

Pre-test Spring 2007 Post-test – spring 2007

N=55 N=35

 Percentage Percentage
Rate your confidence with
Excel 1 2 3 4 Av 1 2 3 4 Av

Moving around the
worksheet 2 4 24 71 3.64 0 0 17 83 3.83

Entering values and formula 2 7 24 67 3.56 0 0 29 71 3.71
Applying built-in financial,
statistical and math
functions

16 33 35 16 2.51 3 6 40 51 3.40

Using goal seek 18 35 38 9 2.38 3 6 37 54 3.43
Using solver 29 35 31 5 2.13 0 3 34 63 3.60
Constructing data tables 2 11 40 47 3.33 0 0 29 71 3.71
Constructing graphs 2 5 40 53 3.44 0 0 29 71 3.71
Using pivot tables 60 18 16 5 1.67 37 34 11 17 2.09
Using lists 33 27 29 11 2.18 9 40 23 29 2.71
Using Named Ranges 44 24 24 9 1.98 6 29 31 34 2.94
 Percentage Percentage

Rate your confidence with
VBA 1 2 3 4 Av 1 2 3 4 Av

Recording macros 85 7 5 2 1.24 0 23 34 43 3.20
Using Excel objects,
methods and properties 75 13 7 5 1.44 0 46 31 23 2.77

Writing functions and
subroutines 78 11 4 7 1.40 9 41 26 24 2.91

Defining variables of
various types 78 9 5 7 1.42 6 24 50 21 2.85

Making assignments 83 6 4 7 1.35 17 26 40 17 2.57
Creating loops 80 5 7 7 1.42 17 31 34 17 2.51
Using 'ifs' and 'cases' 78 7 4 11 1.47 14 23 46 17 2.66
Creating your own forms
and controls 85 5 4 5 1.29 23 26 34 17 2.46

Writing event handlers 85 5 7 2 1.25 57 20 14 9 1.74
Developing decision support
systems 85 9 4 2 1.22 57 20 14 9 1.74

Similar data was gathered in a 400 level course
in fall 2007 and showed that

• Students were significantly less confident on

one Excel dimension and all VBA
dimensions, in comparison to students at end
of CHE 225.

COMPUTERS IN EDUCATION JOURNAL 45

Across the board, in all courses, data showed
that students were not very confident in using
Matlab, Maple & Aspen.

The difference in student confidence between
the upper level classes and the end of CHE 225
can be attributed mainly to the fact that the
skills learned in the sophomore course were not
reinforced in the 300 and 400 level courses.
Another factor is that different instructors taught
the spring and summer versions of CHE 225,
each with their own particular emphasis.

At the end of 2007, these results were presented
to the CBE faculty, to initiate a discussion about
what skills students do need to develop, the
need to develop a computational thread through
the curriculum, and an attempt to reach some
agreement about which tools should be used. In
this way, the assessment data is being used to
drive decisions about the best approach to
curriculum development and the development of
the ‘computational thread’ through subsequent
courses.

Problem solving task

A generic, common problem solving task that
involved modeling and making a decision about
a job offer scenario was developed for
implementation in the TE and ISE 110 class,
and in selected upper division classes (400
level) for each of those departments. Students
were required to complete the task individually
and independently outside of class over a one
week period, and then to turn in all their
working, as well as a solution to the problem.
On the day they turned in their work, they also
completed an in-class online reflection about
their problem solving process. The questions
were framed to reflect the different problem
solving stages implicit in the developmental
model for problem solving developed by
Wolcott4. A scoring rubric was developed to
score the student’s work as well as the
accompanying reflective responses. We are
currently analyzing this work, and will present
some of the findings at the conference.

Lessons Learned

While we are still early in the project, we have
learned a number of lessons about increasing
computer utilization in engineering departments.

• Change is hard and takes more time than

expected. We should all know this by now
but it still comes as a shock that it takes so
long to make changes happen. While people
who are first adopters will readily jump in
and try new things, more seasoned faculty
take much longer and are much harder to
convince that change is even necessary.

• The culture of each department is very

different and must be taken into account.
The three departments we are working with
vary in the leadership styles of their
department heads, the readiness of the
faculty to embrace the changes, and the
computational needs of the students. It is
important to the success of the project to be
sensitive to the differences and flexible in
designing the course changes and
assessments.

• Talking about teaching is not a common

activity in most departments. In our initial
meetings it was often obvious that faculty
had almost no idea about what their
colleagues were doing in their classes. One
unexpected value of a project like this one is
that it gets people talking to each other and
sharing ideas.

• Assessment activities are critical for helping

faculty realize there is a problem, become
galvanized to take action, and continue to
implement changes. When faculty are
confronted with the deficiencies in student
confidence and skills levels, they are more
receptive to making changes to address
them. By the same token, when there is
ongoing assessment of activities, faculty are
able to see results and are encouraged to
continue making the effort to change.

46 COMPUTERS IN EDUCATION JOURNAL

• Departmental leadership is needed to get
faculty to the table. Department heads have
the leverage to encourage faculty to make
good faith efforts to modify their courses. It
can help the project considerably if the
department head strongly supports it and
participates in some of the discussions. Also,
most new faculty are willing to try new
things but department heads and senior
faculty need to recognize these as valuable
contributions towards the tenure process.

• Champions within departments are critical

to success. Given how challenging it is to
make curricular changes, having respected
senior faculty who believe in and participate
in the project makes everything go more
smoothly. Such faculty can mentor their
colleagues as they try new things and can be
positive voices in faculty discussions.
Champions are often the first to try out new
tools and techniques and have the
enthusiasm to keep trying even when
problems arise.

• Support for computer problem and activity

development is an important element in
getting faculty to incorporate computational
tools. The one thing all faculty have in
common is not enough time to do everything
they need to do. Locating and developing
problems and activities takes focused time,
time most faculty are not willing to take. We
have found that providing problem
development and pedagogical support to
faculty facilitates their making changes they
would be unlikely to attempt without such
support.

Bibliograpy

1. LITRE (2005). Learning in a technology

rich environment: A quality enhancement
plan for North Carolina State University.
North Carolina State. http://litre.ncsu.edu

2. Joines, J.A., Roberts, S.R., &

Raubenheimer, C.D. (2007). Computer-
Based Modeling for Engineers using Excel

and VBA. Proceedings of the 2007
American Society for Engineering Education
International Conference, Honolulu, Hi.
Downloaded 1/6/2008 from http://www.
asee.org/acPapers/code/getPaper.cfm?paperI
D=13338&pdf=AC2007Full3009.pdf

3. Genzer, J., & Carnell, B. (2005). Visual

Basic for Applications (VBA) in Microsoft
Excel for Chemical Engineers. NC State
University, Department of Chemical and
Biomolecular Engineering.

4. Wolcott, S.K. (2006). Steps for better

thinking: Developmental problem solving
process. Downloaded 6/20/2007 from
http://www.wolcottlynch.com/EducatorReso
urces.html.

Biographical Information

C. Dianne Raubenheimer is Director of

Assessment in the College of Engineering and
Adjunct Assistant Professor in the Department
of Adult and Higher Education at NC State
University. Dianne obtained undergraduate and
graduate degrees from the University of Natal,
Durban, South Africa and a PhD in Educational
Leadership and Organizational Development
(Higher Education) from the University of
Louisville in Kentucky. She has worked with
faculty and administrators in Engineering for
four years, and previously in the Science and
Education disciplines, on developing and
implementing various assessment and
evaluation processes. Within the College of
Engineering she serves as the coordinator of
ABET accreditation processes, acts as a
resource to faculty in different programs,
develops and implements assessment plans, and
serves as the primary educational
assessment/data analyst adviser on the Dean’s
staff. A particular interest is in helping faculty
to develop and implement classroom-based
assessment and action research plans to
establish the effectiveness of instruction for use
in improving teaching and student learning. She
is currently working with several engineering
faculty assessing the impact of in-class use of

COMPUTERS IN EDUCATION JOURNAL 47

http://litre.ncsu.edu/
http://www/

48 COMPUTERS IN EDUCATION JOURNAL

technology on teaching and student learning.
Dianne has also worked as an education
consultant for a number of organizations
conducting program evaluations and is currently
serving as external evaluator on several grants.
Her research interests focus on faculty
development, action research, the role of
technology in teaching and learning, and
assessment in higher education.

Jeffrey A. Joines is an Associate Professor in
the Textile Engineering, Chemistry, and Science
Department at NC State University and is
currently the Associate Department Head of
Undergraduate Studies in the Textile
Engineering, Chemistry, and Science
department. He received a B.S. in Electrical
Engineering and B.S. in Industrial Engineering
in 1990, a M.S in Industrial Engineering in
1990, and Ph.D. in Industrial Engineering in
1996 all from NC State University. He received
the 1997 Pritsker Doctoral Dissertation Award
from the Institute of Industrial Engineers. He
joined the faculty in the College of Textiles in
2000. His expertise is in supply chain
optimization utilizing computer simulation and
optimization where he has published numerous
papers and given dozens of international
conference presentations. He was the Co-
Proceedings Editor for the 2000 Winter
Simulation Conference and the Program Chair
for the 2005 Winter Simulation Conference and
acts as the technical coordinator for the
conference’s management system. He teaches
undergraduate and graduate classes in computer
information systems, computer based modeling
in Excel and VBA, and simulation and six-
sigma. He was awarded the 2006 NC State
University Outstanding Teaching Award and
was the 2006 College of Textiles Outstanding
Teacher. He is a member of the Academy of
Outstanding Teachers. He also serves as the
chair of the student owned computing (SOC)
initiative in the College of Engineering. He is
heavily involved in utilizing technology in the
classroom.

Amy E. Craig is the NSF-funded MINDSET
project manager and a doctoral student in the
Edward P. Fitts Department of Industrial and
Systems Engineering at NC State University.
Some of her research interests include faculty
development and teaching and learning in the
engineering disciplines. She received her MIE
and BSIE degrees from NC State University and
served as the Coordinator of Student-Owned
Computing in the College of Engineering while
working on the LITRE project. Prior to her
return to NC State, she worked as a Cost
Engineer in the Personal Computing Division of
IBM.

Rebecca Brent is President of Education
Designs, Inc., a consulting firm in Cary, North
Carolina specializing in faculty development
and program evaluation. She received an Ed.D.
from Auburn University, a M.Ed. from
Mississippi State University, and a B.A. from
Millsaps College in Jackson, MS. She
coordinates faculty development and teaching
assistant training activities for the College of
Engineering at North Carolina State University.
She has published roughly 100 articles on a
variety of topics including uses of writing in
undergraduate courses, collaborative learning,
public school reform, technology in K-12
classrooms, and effective university teaching.
Dr. Brent has presented over 300 workshops on
effective teaching, course design, mentoring and
supporting new faculty members, and faculty
development on campuses throughout the
United States and abroad with her colleague Dr.
Richard Felder.

