
COMPUTER IN EDUCATION JOURNAL, VOLUME 9, ISSUE 4, December 2018 1

Abstract— An Instructional Processor has been developed for

use as a design example in an Advanced Digital Systems course.
The system was originally modeled in VHDL and was simulated
using Xilinx design tools to demonstrate operation of the
processor. The design model can also be synthesized and
implemented in hardware on a field programmable gate array.
The goal of this project was to translate the Instructional
Processor into the Verilog hardware description language, while
maintaining the same operational characteristics. VHDL and
Verilog are IEEE standard languages used for the development
and testing of hardware designs. Used correctly, these languages
describe hardware constructs, which can be implemented using
computer aided design tools. These synthesis tools have their own
design guidelines, which align modelling techniques with standard
library modules such as multiplexers and registers. The process
of translating the Instructional Processor from VHDL to Verilog
has also resulted in several key insights and lessons learned. These
range from correct use of signal types and library functions to
important differences in simulation versus synthesis tools. The
Instructional Processor has now been translated from its original
VHDL to an equivalent Verilog model. By focusing on describing
each hardware component, rather than just revising syntax, the
design maintained its functional integrity. The hardware
synthesized by the Xilinx tools was very consistent in both device
utilization and system timing. The project was a success and the
Instructional Processor continues to be a valuable instructional
tool, now available in two languages.

Index Terms—FPGA synthesis, logic simulation, Verilog,
VHDL

I. INTRODUCTION
Teaching digital design involves use of many examples

including counters, registers, arithmetic logic units, and
memory. The design of a computer processor combines these
components into an integrated digital system. An Instructional
Processor has been developed for use as a design example in an
Advanced Digital Systems course at The Citadel [1] - [4]. The
simple architecture provides sufficient complexity to
demonstrate fundamental programming concepts. The entire
system is modeled in VHDL and can be simulated to
demonstrate operation of the processor. Memory-mapped I/O
provides the external interfaces necessary to demonstrate an
example microcontroller application, when synthesized to a
field programmable gate array (FPGA).

R. J. Hayne is an Associate Professor with the Electrical and Computer

Engineering Department, The Citadel, Charleston, SC 29409, USA (e-mail:
ron.hayne@citadel.edu).

VHDL and Verilog are IEEE standard languages used for the

development, verification, synthesis, and testing of hardware
designs [5], [6]. While their language reference manuals
specify the formal syntax used to model designs, they should
not be mistaken for simple programming languages. Some
language constructs should only be used for simulation, while
others are only suitable for synthesis [7], [8]. Used correctly,
these languages describe hardware constructs, which can be
implemented using computer aided design tools. These
synthesis tools have their own design guidelines, which align
modelling techniques with standard library modules such as
multiplexers, decoders, registers, and memory [9].

The goal of this project was to translate the Instructional
Processor into the Verilog hardware description language,
while maintaining the same operational characteristics. While
there are language translation tools available, these mainly
convert syntax between the languages and only support a subset
of the overall language constructs [10], [11]. These tools still
require significant human intervention to produce a functional
result. The approach taken here was to focus on modelling
hardware constructs, rather than simply looking at variations in
syntax. The resulting design model replicates simulation results
for a range of test programs, while also maintaining the same
hardware timing constraints for the FPGA implementation.

II. INSTRUCTIONAL PROCESSOR ARCHITECTURE
The instruction set architecture of the example processor has

been designed to illustrate multiple operations and basic
addressing modes. It is based on a three-bus organization of a
16-bit data path with a four-word register file (REGS) [12].
Key registers include: program counter (PC), instruction
register (IR), memory data register (MDR), and memory
address register (MAR). The most recent update includes a
subroutine STACK and a higher capacity, 4K word by 16-bit,
MEMORY [3]. The complete data path is shown in Fig. 1.

The control unit for the Instructional Processor uses a step
counter to generate a sequence of up to eight time steps. These
time steps are used to determine the order of the control signals
issued to the data path for the fetch and execute sequences.
Decoding of the instruction is accomplished by four decoders
(DCD) connected to specific fields of the IR. The organization
of the control unit is shown in Fig. 2.

Translating the Instructional Processor from
VHDL to Verilog

Ronald J. Hayne, Senior Member, IEEE

COMPUTER IN EDUCATION JOURNAL, VOLUME 9, ISSUE 4, December 2018 2

Fig.1. Data path for the Instructional Processor.

Fig. 2. Control unit organization for the Instructional Processor.

III. VHDL AND VERILOG MODELS
Keeping the focus on modelling hardware, rather than

variations in syntax, VHDL and Verilog are more similar than
different. Concurrent combinational logic, such as an
arithmetic logic unit (ALU) or multiplexer (MUX), can be
implemented using language specific signal assignment
statements. Both languages can also model clock triggered
sequential logic, such as a register or counter, using process or
block statements. In addition, both VHDL and Verilog support
design abstraction using behavioral or structural modelling
constructs.

The Verilog version of the text that the Instructional
Processor was designed to support contains a list of important

guidelines to model and synthesize hardware [13]. Some of
these include:

• If possible, use concurrent assignments (assign) to design
combinational logic.

• It is possible to use procedural assignments (always
blocks) to design either combinational logic or sequential logic.

• When procedural assignments (always blocks) are used
for combinational logic, use blocking assignments (e.g., ‘=’).

• When procedural assignments (always blocks) are used
for sequential logic, use non-blocking assignments (e.g., ‘<=’).

• Do not mix blocking and non-blocking statements in an
always block.

As an initial example of translating a VHDL model into
Verilog, consider the block diagram of a multi-port 4 x 16
Register File shown in Fig. 3. The first part of the VHDL model
is the entity, which describes the input/output interface, shown
in Fig. 4. The equivalent Verilog module is shown in Fig. 5.
Each model defines both the size and direction of all external
signals from the block diagram.

Fig. 3. Block diagram of REG4: 4 x 16 Register File.

entity REG4 is
 port(CLK: in std_logic;
 REGS_Read1: in std_logic;
 REGS_Read2: in std_logic;
 REGS_Write: in std_logic;
 Addr1: in std_logic_vector(1 downto 0);
 Addr2: in std_logic_vector(1 downto 0);
 Data_In: in std_logic_vector(15 downto 0);
 Data_Out1: out std_logic_vector(15 downto 0);
 Data_Out2: out std_logic_vector(15 downto 0));
end REG4;

Fig. 4. VHDL entity for REG4: 4 x 16 register file.

module REG4(CLK,
 REGS_Read1, REGS_Read2, REGS_Write,
 Addr1, Addr2, Data_In,
 Data_Out1, Data_Out2);
 input CLK;
 input REGS_Read1;
 input REGS_Read2;
 input REGS_Write;
 input [1:0] Addr1;
 input [1:0] Addr2;
 input [15:0] Data_In;
 output [15:0] Data_Out1;
 output [15:0] Data_Out2;

Fig. 5. Verilog module for REG4: 4 x 16 register file.

HAYNE: Translating the Instructional Processor from VHDL to Verilog 3

The internal function of the VHDL model for the 4 x 16
Register File is specified using the behavioral architecture
shown in Fig. 6. It defines the internal register array (REG4 of
type RAM4) as well as the synchronous and asynchronous
behavior of the signals. The equivalent behavioral Verilog
model is shown in Fig. 7. It also models the appropriate timing
behavior of the signals as well as the use of tri-state buffers,
indicated by high-impedance (Z). These tri-state outputs are
used for connection to the buses in the data path.

architecture Behave of REG4 is
 type RAM4 is array (0 to 3) of
 std_logic_vector(15 downto 0);
 signal REG4: RAM4;
begin
 -- asynchronous read
 process(REGS_Read1, REGS_Read2, Addr1, Addr2)
 begin
 if REGS_Read1 = '1' then
 Data_Out1 <= REG4(conv_integer(Addr1));
 else
 -- high impedance
 Data_Out1 <= (others => 'Z');
 end if;
 if REGS_Read2 = '1' then
 Data_Out2 <= REG4(conv_integer(Addr2));
 else
 -- high-impedance
 Data_Out2 <= (others => 'Z');
 end if;
 end process;
 -- synchronous write
 process(CLK)
 begin
 if rising_edge(CLK) then
 if REGS_Write = '1' then
 REG4(conv_integer(Addr2)) <= Data_In;
 end if;
 end if;
 end process;
end Behave;

Fig. 6. VHDL behavioral architecture for REG4: 4 x 16 register file.

 // asynchronous read
 always @(REGS_Read1, REGS_Read2, Addr1, Addr2)
 begin
 if (REGS_Read1)
 Data_Out1 = REG4[Addr1];
 else
 // high-impedance
 Data_Out1 = 'bZ;
 if (REGS_Read2)
 Data_Out2 = REG4[Addr2];
 else
 // high-impedance
 Data_Out2 = 'bZ;
 end
 // synchronous write
 always @(posedge CLK)
 begin
 if (REGS_Write)
 REG4[Addr2] <= Data_In;
 end
endmodule

Fig. 7. Verilog behavioral module for REG4: 4 x 16 register file.

For the implementation of the data path, the REG4
component is mapped to the data and control signals in the
design hierarchy using a structural model for both VHDL and
Verilog. Of special note is the use of the reg and wire types in
Verilog. Usage of a signal in other parts of the model may
dictate a specific signal type, which may be somewhat counter
intuitive. This is a key reason that simple syntax translation
often fails. Beyond the signal declarations, the structural
models shown in Fig. 8 and Fig. 9 are actually very similar.
They both map component ports to signal connections using
positional association.

 -- Instruction Register
 signal IR: std_logic_vector(15 downto 0);
 -- Register File Control Signals
 signal REGS_Read1: std_logic;
 signal REGS_Read2: std_logic;
 signal REGS_Write: std_logic;
 -- Buses
 signal BUS_A: std_logic_vector(15 downto 0);
 signal BUS_B: std_logic_vector(15 downto 0);
 signal BUS_C: std_logic_vector(15 downto 0);
 -- Instruction Register Address Fields
 alias SRC_REG: std_logic_vector(1 downto 0)
 is IR(10 downto 9);
 alias DST_REG: std_logic_vector(1 downto 0)
 is IR(6 downto 5);
begin
-- Data Path
 -- Register File
 REGS: REG4 port map (CLK,
 REGS_Read1, REGS_Read2, REGS_Write,
 SRC_REG, DST_REG, BUS_C,
 BUS_A, BUS_B);

Fig. 8. VHDL structural model for register file integrated into data path.

 // Instruction Register
 reg [15:0] IR;
 // Register File Control Signals
 reg REGS_Read1;
 reg REGS_Read2;
 reg REGS_Write;
 // Register File Data Output Connections
 wire [15:0] Data_Out1;
 wire [15:0] Data_Out2;
 // Buses
 reg [15:0] BUS_A;
 reg [15:0] BUS_B;
 wire [15:0] BUS_C;
 // Instruction Register Address Fields
 wire [1:0] SRC_REG = IR[10:9];
 wire [1:0] DST_REG = IR[6:5];
// Data Path
 // Register File
 REG4 REGS (CLK,
 REGS_Read1, REGS_Read2, REGS_Write,
 SRC_REG, DST_REG, BUS_C,
 Data_Out1, Data_Out2);
// Control Unit
always @(*) // Control Signal Encoder
begin
 BUS_A = Data_Out1;
 BUS_B = Data_Out2;

Fig. 9. Verilog structural model for register file integrated into data path.

COMPUTER IN EDUCATION JOURNAL, VOLUME 9, ISSUE 4, December 2018 4

As a final example, the control signal encoder from the
control unit in Fig. 2 is implemented using nested case
statements to model the various decoders connected to the
specific fields of the IR. The appropriate control signals are
asserted for each combination of opcode, source addressing
mode, and destination addressing mode. Multiple time steps
are used as required to correctly sequence the control signals.
The VHDL and Verilog models for an example execution
sequence are shown in Fig. 10 and Fig. 11.

-- Control Unit
 -- Control Signal Encoder
 Control : process(STEP, IR, STATUS, PC)
 begin
 -- Execute
 case OP is
 -- 1-Operand
 when MOVE | INV | SHL | ASHR =>
 -- Addressing Modes
 case SRC_MODE is
 when M0 =>
 case DST_MODE is
 when M0 =>
 -- OP Rs,Rd
 case STEP is
 when T3 =>
 REGS_Read1 <= '1';
 ALU_OP <= OP;
 Load_STATUS <= '1';
 REGS_Write <= '1';
 Clear <= '1';
 when others =>
 null;
 end case;

Fig. 10. VHDL behavioral model for control signal encoder.

// Control Unit
 // Control Signal Encoder
 always @(*)
 begin
 // Execute
 case (OP)
 // 1-Operand
 MOVE, INV, SHL, ASHR:
 // Addressing Modes
 case (SRC_MODE)
 M0:
 case (DST_MODE)
 M0:
 // OP Rs,Rd
 case (STEP)
 T3: begin
 REGS_Read1 = 1;
 ALU_OP = OP;
 Load_STATUS = 1;
 REGS_Write = 1;
 Clear = 1;
 end
 default:
 ;
 endcase

Fig. 11. Verilog behavioral model for control signal encoder.

IV. PROGRAMMING ENVIRONMENT
An assembly language program can be written as a simple

text file, using the syntax specified by the instruction set
architecture. A custom assembler is used to convert the
program to a binary machine code file [3]. Standard library I/O
functions are used to load the machine code into memory during
compilation of the hardware description language models. An
example program for computing the sum of an array, using a
counter and a pointer, is shown in Fig. 12.

.data ;Begin Data Section
SUM ;Result goes here
N 3 ;Number of Elements
X 7, -8, 10 ;Sample Array Data

.program ;Begin Program Code
START: MOVE [N],R1 ;Init Counter
 MOVE X,R2 ;Init Pointer
 MOVE 0,R0 ;Init Sum
LOOP: ADD [R2],R0 ;Add using Pointer
 ADD 1,R2 ;Inc Pointer
 ADD -1,R1 ;Dec Counter
 BNZ LOOP ;If not Zero then Loop
 MOVE R0,[SUM] ;Store Result
STOP: BRA STOP ;Done

Fig. 12. Example assembly language program.

The VHDL and Verilog models are compiled using the Xilinx

ISE design tools and behavioral simulations are performed
using Xilinx iSim [14]. Signal values can be traced in the
simulations to verify correct operation of the data path and
control unit as the test program is run.

V. MICROCONTROLLER EXTENSION
Before synthesizing the models to hardware on an FPGA, an

I/O interface is added. Input and output ports use the memory-
mapped addresses shown in Fig. 13. The FPGA was chosen
with sufficient block RAM resources for the 4K x 16-bit main
memory. Integration of the processor, memory, and I/O onto a
single chip is known as a microcontroller.

Fig. 13. Memory map for the Instructional Processor.

HAYNE: Translating the Instructional Processor from VHDL to Verilog 5

The Instructional Processor was synthesized to the target
FPGA using Xilinx XST [9] and implemented on a Digilent
BASYS 2 development board [15]. This board provides a large
collection of built-in I/O devices, as well as ports for connecting
additional peripheral modules (Pmods). Sample Pmods include
A/D converter, keypad, and H-bridge motor driver.

VI. KEY INSIGHTS AND LESSONS LEARNED
During the process of translating the Instructional Processor

from VHDL to Verilog, several key insights became apparent
along with lessons learned from refinement of the models. The
first minor note is that all signal assignments in an always block
must use the reg data type, even if modelling combinational
logic. This often results in a confusing mix of reg and wire
declarations like those shown in the example in Fig. 9. This is
also an example of where simple syntax translation fails.
Several iterations were required to ensure the correct signal
types were used to model specific hardware.

The next lesson learned occurred using standard libraries.
Verilog has a robust set of file I/O functions; however, these
functions did not necessarily perform the same during different
phases of the design process. For example, the main memory
module was initialized from a binary file using the function
shown in Fig. 14.

//Initialize Memory
initial $readmemb("program_pwm.bin", MEM4K);

Fig. 14. Memory initialization using standard file I/O function.

The correct contents and performance of the memory were
verified via functional simulation. However, during synthesis
of the model to an FPGA, an innocuous warning message
reported that the 4K memory was only partially initialized and,
therefore, initialization was ignored. The resulting failure of
the hardware implementation was difficult to trace, but was
readily corrected by adding thousands of zeros to the end of the
binary file.

Finally, achieving the same hardware timing optimizations
required very precise modelling techniques to force the
synthesis tools to recognize specific design elements. For
example, the bus connections (BUS_A, BUS_B) were intended
to use tri-state buffers instead of multiplexers. This would use
less FPGA resources and improve system timing. In VHDL the
buses can be forced to tri-state buffers by using a simple
initialization at the beginning of the control process, shown in
Fig. 15.

-- Control Signal Encoder
Control : process(STEP, IR, STATUS, PC)
begin
 -- Synthesize tri-state buses
 BUS_A <= (others => 'Z');
 BUS_B <= (others => 'Z');

Fig. 15. Implementation of tri-state buses in VHDL.

In Verilog, however, a signal can be initialized to a one or a

zero, but not high-impedance. Assigning this default value to
the buses required use of a default case statement buried within

the control signal encoder, as shown in Fig. 16. Due to the
multiple nested case statements, several iterations were
required to find an optimal placement that would be correctly
recognized by the synthesis tool.

 // Synthesize tristate buses
 default:
 begin
 BUS_A = 'bZ;
 BUS_B = 'bZ;
 end
endcase

Fig. 16. Implementation of tri-state buses in Verilog.

Once the correct modelling construct was found for the target

hardware, the synthesis tool was able to replicate the desired
bus structure and device utilization.

VII. RESULTS AND CONCLUSIONS
The VHDL and Verilog models were compiled using the

Xilinx ISE design tools and behavioral simulations were
performed using Xilinx iSim. Signal values were traced in the
simulations to verify correct operation of the data path and
control unit as test programs were run. Both the VHDL and
Verilog models exactly replicate all register transfers and
timing for multiple test sequences. From a simulation
perspective, the results show that the two models are equivalent.

The VHDL and Verilog models were next synthesized to the
target FPGA using Xilinx XST. Device utilization was
characterized by the number of 4 input look-up tables (LUTs)
used by the design. From a timing perspective, the worst-case
propagation delay was used to determine the maximum clock
frequency for the FPGA. The synthesis results were analyzed
both with and without the tri-state buffer optimization.

The synthesis results, before resolution of the tri-state bus
problem, are summarized in Table I. The Verilog design, with
multiplexer routing for the buses, uses 40% more FPGA
resources. This results in a significantly longer propagation
delay and much slower clock frequency (18%). The synthesis
results in Table II show that, once the tri-state buses are
correctly implemented, device utilization is virtually identical.
Timing results are very consistent and the slight difference (5%)
can be attributed to the varying order of placement and routing
of components produced by the VHDL and Verilog versions of
the synthesis tools. Both the designs now meet the timing
requirements to run on the BASYS 2 FPGA prototype board
with a 50 MHz clock source.

TABLE I

INITIAL SYNTHESIS RESULTS (VERILOG WITHOUT TRI-STATE BUSES)
 VHDL Verilog % Difference
Number of 4 input LUTs 724 1018 40.6%
Maximum clock frequency 60.6 MHz 46.9 MHz 18.2%

TABLE II
FINAL SYNTHESIS RESULTS

 VHDL Verilog % Difference
Number of 4 input LUTs 724 725 0.14%
Maximum clock frequency 60.6 MHz 57.3 MHz 5.4%

COMPUTER IN EDUCATION JOURNAL, VOLUME 9, ISSUE 4, December 2018 6

Various microcontroller applications were used to
demonstrate functionality of the hardware implementations.
These include DC motor speed control via pulse-width
modulation (PWM) and time-multiplex scanning of a 4 x 4 hex
input keypad. Serial I/O was also demonstrated using timing
loops to send and receive serial data at 9600 baud. Both the
VHDL and Verilog versions of the microcontroller were
successfully able to execute the test programs and interface with
the external hardware.

The Instructional Processor has now been translated from its
original VHDL to an equivalent Verilog model. By focusing
on describing each hardware component, rather than just
revising syntax, the design maintained its functional integrity.
Simulation results for both models exactly replicate all register
transfers and timing for multiple test sequences. The
synthesized hardware was also very consistent in both device
utilization and maximum clock frequency. The project was a
success and the Instructional Processor continues to achieve its
goal as a valuable instructional tool [2], [3], now available in
two languages [4], [16].

REFERENCES

[1] R. J. Hayne, "Translating the Instructional Processor from VHDL to

Verilog," Proceedings ASEE Annual Conference and Exposition, Salt
Lake City, UT, June 2018.

[2] R. J. Hayne, “An Instructional Processor Design using VHDL and an
FPGA,” Computers in Education Journal, ASEE, Vol. 3 No. 2, April -
June 2012.

[3] R. J. Hayne and J. I. Moore, “Evolution of the Instructional Processor,”
Computers in Education Journal, ASEE, Vol. 6 No. 4, October -
December 2015.

[4] R. J. Hayne, “Design of an Instructional Processor,” in C. Roth and L.
John, Digital Systems Design Using VHDL, Third Edition, Cengage
Learning, Boston, MA, 2018. [Online]. Available:
http://academic.cengage.com/resource_uploads/downloads/
1305635140_559956.pdf.

[5] IEEE Standard VHDL Language Reference Manual, IEEE Std 1076,
2000 Edition, IEEE, New York, NY, December 2000.

[6] IEEE Standard for Verilog® Hardware Description Language, IEEE Std
1364TM-2005, IEEE, New York, NY, April 2006.

[7] R. Duckworth, “Embedded System Design with FPGAs using HDLs,”
Proceedings of the 2005 IEEE International Conference on
Microelectronic Systems Education, IEEE, New York, NY, 2005.

[8] J. Schreiner, R. Findenig, and W. Ecker, “Design Centric Modeling of
Digital Hardware,” Proceedings IEEE International High Level Design
Validation and Test Workshop, IEEE, New York, NY, 2016.

[9] XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD
Devices, UG627, v14.5, Xilinx, Inc., March 2013.

[10] L. Dolittle, vhd2vl. [Online]. Available:
http://doolittle.icarus.com/~larry/vhd2vl/.

[11] Synapticad, Inc., VHDL2VeriLog. [Online]. Available:
http://www.syncad.com/verilog_vhdl_translator.htm.

[12] R. J. Hayne, "VHDL Projects to Reinforce Computer Architecture
Classroom Instruction," Computers in Education Journal, ASEE, Vol.
XVIII No. 2, April - June 2008.

[13] C. Roth, L. John, and B. Lee, Digital Systems Design Using Verilog,
First Edition, Cengage Learning, Boston, MA, 2016.

[14] iSim User Guide, UG660, v14.3, Xilinx, Inc., October 2012.
[15] Digilent, Inc., Digilent Documentation. [Online]. Available:

https://reference.digilentinc.com/
[16] R. J. Hayne, “Design of an Instructional Processor,” in C. Roth, L. John,

and B. Lee, Digital Systems Design Using Verilog, First Edition,
Cengage Learning, Boston, MA, 2016. [Online]. Available:
http://academic.cengage.com/resource_uploads/downloads/
1285051076_581158.pdf.

Ronald J. Hayne is an Associate
Professor with the Electrical and Computer
Engineering Department, The Citadel,
Charleston, SC. He received the B.S.
degree in computer science from the
United States Military Academy, West
Point, NY; the M.S. degree in electrical
engineering from the University of

Arizona, Tucson; and the Ph.D. degree in electrical engineering
from the University of Virginia, Charlottesville.

Dr. Hayne's professional areas of interest include digital
systems design, computer architecture, and hardware
description languages. He is a retired Army Colonel with
assignments at U.S. Army Space and Strategic Defense
Command, Arlington, VA; Army Research Laboratory,
Aberdeen Proving Ground, MD; and the National Security
Space Architect, Fairfax, VA. His academic career also
includes faculty positions at the United States Military
Academy, West Point and George Mason University, Fairfax,
VA.

http://academic.cengage.com/resource_uploads/downloads/1305635140_559956.pdf
http://academic.cengage.com/resource_uploads/downloads/1305635140_559956.pdf
http://doolittle.icarus.com/%7Elarry/vhd2vl/
http://www.syncad.com/verilog_vhdl_translator.htm
https://reference.digilentinc.com/
http://academic.cengage.com/resource_uploads/downloads/1285051076_581158.pdf
http://academic.cengage.com/resource_uploads/downloads/1285051076_581158.pdf

	I. INTRODUCTION
	II. Instructional Processor Architecture
	III. VHDL and Verilog Models
	IV. Programming Environment
	V. Microcontroller Extension
	VI. Key Insights and Lessons Learned
	VII. Results and Conclusions
	References

