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Abstract— An Instructional Processor has been developed for 

use as a design example in an Advanced Digital Systems course.  
The system was originally modeled in VHDL and was simulated 
using Xilinx design tools to demonstrate operation of the 
processor.  The design model can also be synthesized and 
implemented in hardware on a field programmable gate array.  
The goal of this project was to translate the Instructional 
Processor into the Verilog hardware description language, while 
maintaining the same operational characteristics.  VHDL and 
Verilog are IEEE standard languages used for the development 
and testing of hardware designs.  Used correctly, these languages 
describe hardware constructs, which can be implemented using 
computer aided design tools.  These synthesis tools have their own 
design guidelines, which align modelling techniques with standard 
library modules such as multiplexers and registers.  The process 
of translating the Instructional Processor from VHDL to Verilog 
has also resulted in several key insights and lessons learned.  These 
range from correct use of signal types and library functions to 
important differences in simulation versus synthesis tools.  The 
Instructional Processor has now been translated from its original 
VHDL to an equivalent Verilog model.  By focusing on describing 
each hardware component, rather than just revising syntax, the 
design maintained its functional integrity.  The hardware 
synthesized by the Xilinx tools was very consistent in both device 
utilization and system timing.  The project was a success and the 
Instructional Processor continues to be a valuable instructional 
tool, now available in two languages. 
 

Index Terms—FPGA synthesis, logic simulation, Verilog, 
VHDL 
 

I. INTRODUCTION 
Teaching digital design involves use of many examples 

including counters, registers, arithmetic logic units, and 
memory.  The design of a computer processor combines these 
components into an integrated digital system.  An Instructional 
Processor has been developed for use as a design example in an 
Advanced Digital Systems course at The Citadel [1] - [4].  The 
simple architecture provides sufficient complexity to 
demonstrate fundamental programming concepts.  The entire 
system is modeled in VHDL and can be simulated to 
demonstrate operation of the processor.  Memory-mapped I/O 
provides the external interfaces necessary to demonstrate an 
example microcontroller application, when synthesized to a 
field programmable gate array (FPGA). 
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VHDL and Verilog are IEEE standard languages used for the 

development, verification, synthesis, and testing of hardware 
designs [5], [6].  While their language reference manuals 
specify the formal syntax used to model designs, they should 
not be mistaken for simple programming languages.  Some 
language constructs should only be used for simulation, while 
others are only suitable for synthesis [7], [8].  Used correctly, 
these languages describe hardware constructs, which can be 
implemented using computer aided design tools.  These 
synthesis tools have their own design guidelines, which align 
modelling techniques with standard library modules such as 
multiplexers, decoders, registers, and memory [9]. 

The goal of this project was to translate the Instructional 
Processor into the Verilog hardware description language, 
while maintaining the same operational characteristics.  While 
there are language translation tools available, these mainly 
convert syntax between the languages and only support a subset 
of the overall language constructs [10], [11]. These tools still 
require significant human intervention to produce a functional 
result.  The approach taken here was to focus on modelling 
hardware constructs, rather than simply looking at variations in 
syntax.  The resulting design model replicates simulation results 
for a range of test programs, while also maintaining the same 
hardware timing constraints for the FPGA implementation.  

II. INSTRUCTIONAL PROCESSOR ARCHITECTURE 
The instruction set architecture of the example processor has 

been designed to illustrate multiple operations and basic 
addressing modes.  It is based on a three-bus organization of a 
16-bit data path with a four-word register file (REGS) [12].  
Key registers include: program counter (PC), instruction 
register (IR), memory data register (MDR), and memory 
address register (MAR).  The most recent update includes a 
subroutine STACK and a higher capacity, 4K word by 16-bit, 
MEMORY [3].  The complete data path is shown in Fig. 1. 

The control unit for the Instructional Processor uses a step 
counter to generate a sequence of up to eight time steps.  These 
time steps are used to determine the order of the control signals 
issued to the data path for the fetch and execute sequences.  
Decoding of the instruction is accomplished by four decoders 
(DCD) connected to specific fields of the IR.  The organization 
of the control unit is shown in Fig. 2. 
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Fig.1.  Data path for the Instructional Processor. 
 

 

 
 
Fig. 2.  Control unit organization for the Instructional Processor. 
 

III. VHDL AND VERILOG MODELS 
Keeping the focus on modelling hardware, rather than 

variations in syntax, VHDL and Verilog are more similar than 
different.  Concurrent combinational logic, such as an 
arithmetic logic unit (ALU) or multiplexer (MUX), can be 
implemented using language specific signal assignment 
statements.  Both languages can also model clock triggered 
sequential logic, such as a register or counter, using process or 
block statements.  In addition, both VHDL and Verilog support 
design abstraction using behavioral or structural modelling 
constructs. 

The Verilog version of the text that the Instructional 
Processor was designed to support contains a list of important 

guidelines to model and synthesize hardware [13].  Some of 
these include:  

• If possible, use concurrent assignments (assign) to design 
combinational logic. 

• It is possible to use procedural assignments (always 
blocks) to design either combinational logic or sequential logic. 

• When procedural assignments (always blocks) are used 
for combinational logic, use blocking assignments (e.g., ‘=’). 

• When procedural assignments (always blocks) are used 
for sequential logic, use non-blocking assignments (e.g., ‘<=’). 

• Do not mix blocking and non-blocking statements in an 
always block. 

As an initial example of translating a VHDL model into 
Verilog, consider the block diagram of a multi-port 4 x 16 
Register File shown in Fig. 3.  The first part of the VHDL model 
is the entity, which describes the input/output interface, shown 
in Fig. 4.  The equivalent Verilog module is shown in Fig. 5.  
Each model defines both the size and direction of all external 
signals from the block diagram. 
 
 

 
 
Fig. 3.  Block diagram of REG4:  4 x 16 Register File. 
 
 
entity REG4 is 
  port(CLK: in std_logic; 
    REGS_Read1: in std_logic; 
    REGS_Read2: in std_logic; 
    REGS_Write: in std_logic; 
    Addr1: in std_logic_vector(1 downto 0); 
    Addr2: in std_logic_vector(1 downto 0); 
    Data_In: in std_logic_vector(15 downto 0); 
    Data_Out1: out std_logic_vector(15 downto 0);         
    Data_Out2: out std_logic_vector(15 downto 0)); 
end REG4; 
 

Fig. 4.  VHDL entity for REG4:  4 x 16 register file. 
 
 
module REG4(CLK,  
            REGS_Read1, REGS_Read2, REGS_Write, 
            Addr1, Addr2, Data_In,  
            Data_Out1, Data_Out2); 
  input CLK; 
  input REGS_Read1; 
  input REGS_Read2; 
  input REGS_Write; 
  input [1:0] Addr1; 
  input [1:0] Addr2; 
  input [15:0] Data_In; 
  output [15:0] Data_Out1; 
  output [15:0] Data_Out2; 

 
Fig. 5.  Verilog module for REG4:  4 x 16 register file.
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The internal function of the VHDL model for the 4 x 16 
Register File is specified using the behavioral architecture 
shown in Fig. 6.  It defines the internal register array (REG4 of 
type RAM4) as well as the synchronous and asynchronous 
behavior of the signals.  The equivalent behavioral Verilog 
model is shown in Fig. 7.  It also models the appropriate timing 
behavior of the signals as well as the use of tri-state buffers, 
indicated by high-impedance (Z).  These tri-state outputs are 
used for connection to the buses in the data path. 
 
 
architecture Behave of REG4 is 
  type RAM4 is array (0 to 3) of 
    std_logic_vector(15 downto 0); 
  signal REG4: RAM4;   
begin 
  -- asynchronous read 
  process(REGS_Read1, REGS_Read2, Addr1, Addr2)  
  begin 
    if REGS_Read1 = '1' then 
      Data_Out1 <= REG4(conv_integer(Addr1)); 
    else 
      -- high impedance 
      Data_Out1 <= (others => 'Z');  
    end if; 
    if REGS_Read2 = '1' then 
      Data_Out2 <= REG4(conv_integer(Addr2)); 
    else 
      -- high-impedance 
      Data_Out2 <= (others => 'Z');  
    end if; 
  end process; 
  -- synchronous write 
  process(CLK) 
  begin 
    if rising_edge(CLK) then  
      if REGS_Write = '1' then 
        REG4(conv_integer(Addr2)) <= Data_In; 
      end if; 
    end if; 
  end process; 
end Behave; 
 

Fig. 6.  VHDL behavioral architecture for REG4:  4 x 16 register file. 
 
 
  // asynchronous read 
  always @(REGS_Read1, REGS_Read2, Addr1, Addr2)        
    begin 
      if (REGS_Read1) 
        Data_Out1 = REG4[Addr1]; 
      else 
        // high-impedance 
        Data_Out1 = 'bZ;  
      if (REGS_Read2) 
        Data_Out2 = REG4[Addr2]; 
      else 
        // high-impedance 
        Data_Out2 = 'bZ;  
    end 
  // synchronous write 
  always @(posedge CLK)   
  begin 
    if (REGS_Write) 
      REG4[Addr2] <= Data_In; 
  end 
endmodule 
 

Fig. 7.  Verilog behavioral module for REG4:  4 x 16 register file. 
 

For the implementation of the data path, the REG4 
component is mapped to the data and control signals in the 
design hierarchy using a structural model for both VHDL and 
Verilog.  Of special note is the use of the reg and wire types in 
Verilog.   Usage of a signal in other parts of the model may 
dictate a specific signal type, which may be somewhat counter 
intuitive.  This is a key reason that simple syntax translation 
often fails.  Beyond the signal declarations, the structural 
models shown in Fig. 8 and Fig. 9 are actually very similar.  
They both map component ports to signal connections using 
positional association. 

 
 
  -- Instruction Register   
  signal IR: std_logic_vector(15 downto 0); 
  -- Register File Control Signals 
  signal REGS_Read1: std_logic;  
  signal REGS_Read2: std_logic; 
  signal REGS_Write: std_logic; 
  -- Buses 
  signal BUS_A: std_logic_vector(15 downto 0);  
  signal BUS_B: std_logic_vector(15 downto 0); 
  signal BUS_C: std_logic_vector(15 downto 0); 
  -- Instruction Register Address Fields 
  alias SRC_REG: std_logic_vector(1 downto 0) 
    is IR(10 downto 9); 
  alias DST_REG: std_logic_vector(1 downto 0) 
    is IR(6 downto 5); 
begin 
-- Data Path 
  -- Register File 
  REGS: REG4 port map (CLK,  
          REGS_Read1, REGS_Read2, REGS_Write, 
          SRC_REG, DST_REG, BUS_C,  
          BUS_A, BUS_B); 
 

Fig. 8.  VHDL structural model for register file integrated into data path. 
 
 
  // Instruction Register  
  reg [15:0] IR;   
  // Register File Control Signals 
  reg REGS_Read1;   
  reg REGS_Read2; 
  reg REGS_Write; 
  // Register File Data Output Connections 
  wire [15:0] Data_Out1; 
  wire [15:0] Data_Out2; 
  // Buses 
  reg [15:0] BUS_A;   
  reg [15:0] BUS_B; 
  wire [15:0] BUS_C; 
  // Instruction Register Address Fields 
  wire [1:0] SRC_REG = IR[10:9]; 
  wire [1:0] DST_REG = IR[6:5]; 
// Data Path 
  // Register File 
  REG4 REGS (CLK,  
         REGS_Read1, REGS_Read2, REGS_Write, 
         SRC_REG, DST_REG, BUS_C,  
         Data_Out1, Data_Out2); 
// Control Unit 
always @(*)  // Control Signal Encoder 
begin  
  BUS_A = Data_Out1;  
  BUS_B = Data_Out2; 
 

Fig. 9.  Verilog structural model for register file integrated into data path. 
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As a final example, the control signal encoder from the 
control unit in Fig. 2 is implemented using nested case 
statements to model the various decoders connected to the 
specific fields of the IR.  The appropriate control signals are 
asserted for each combination of opcode, source addressing 
mode, and destination addressing mode.  Multiple time steps 
are used as required to correctly sequence the control signals.  
The VHDL and Verilog models for an example execution 
sequence are shown in Fig. 10 and Fig. 11. 

 
 
-- Control Unit 
  -- Control Signal Encoder 
  Control : process(STEP, IR, STATUS, PC)  
  begin 
    -- Execute 
    case OP is   
      -- 1-Operand 
      when MOVE | INV | SHL | ASHR =>  
        -- Addressing Modes  
        case SRC_MODE is 
          when M0 =>  
            case DST_MODE is 
              when M0 =>   
              -- OP Rs,Rd 
                case STEP is 
                  when T3 => 
                    REGS_Read1 <= '1'; 
                    ALU_OP <= OP; 
                    Load_STATUS <= '1'; 
                    REGS_Write <= '1'; 
                    Clear <= '1'; 
                  when others => 
                    null; 
                end case; 
 

Fig. 10.  VHDL behavioral model for control signal encoder. 
 
 
// Control Unit 
  // Control Signal Encoder 
  always @(*)   
  begin 
    // Execute 
    case (OP)   
      // 1-Operand 
      MOVE, INV, SHL, ASHR: 
        // Addressing Modes   
        case (SRC_MODE)   
          M0:  
            case (DST_MODE) 
              M0:   
              // OP Rs,Rd 
                case (STEP) 
                  T3: begin 
                        REGS_Read1 = 1; 
                        ALU_OP = OP; 
                        Load_STATUS = 1; 
                        REGS_Write = 1; 
                        Clear = 1; 
                      end 
                  default: 
                    ; 
                endcase 
 

Fig. 11.  Verilog behavioral model for control signal encoder. 
 

IV. PROGRAMMING ENVIRONMENT 
An assembly language program can be written as a simple 

text file, using the syntax specified by the instruction set 
architecture.  A custom assembler is used to convert the 
program to a binary machine code file [3].  Standard library I/O 
functions are used to load the machine code into memory during 
compilation of the hardware description language models.  An 
example program for computing the sum of an array, using a 
counter and a pointer, is shown in Fig. 12. 

 
 
.data                 ;Begin Data Section 
SUM                   ;Result goes here            
N 3                   ;Number of Elements 
X 7, -8, 10           ;Sample Array Data 
 
.program              ;Begin Program Code 
START: MOVE [N],R1    ;Init Counter 
       MOVE X,R2      ;Init Pointer 
       MOVE 0,R0      ;Init Sum 
LOOP:  ADD  [R2],R0   ;Add using Pointer 
       ADD  1,R2      ;Inc Pointer 
       ADD  -1,R1     ;Dec Counter 
       BNZ  LOOP      ;If not Zero then Loop 
       MOVE R0,[SUM]  ;Store Result 
STOP:  BRA  STOP      ;Done 
 

Fig. 12.  Example assembly language program. 
 
 
The VHDL and Verilog models are compiled using the Xilinx 

ISE design tools and behavioral simulations are performed 
using Xilinx iSim [14].  Signal values can be traced in the 
simulations to verify correct operation of the data path and 
control unit as the test program is run. 

V. MICROCONTROLLER EXTENSION 
Before synthesizing the models to hardware on an FPGA, an 

I/O interface is added.   Input and output ports use the memory-
mapped addresses shown in Fig. 13.  The FPGA was chosen 
with sufficient block RAM resources for the 4K x 16-bit main 
memory.  Integration of the processor, memory, and I/O onto a 
single chip is known as a microcontroller. 

 

 
 

Fig. 13.  Memory map for the Instructional Processor. 
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The Instructional Processor was synthesized to the target 
FPGA using Xilinx XST [9] and implemented on a Digilent 
BASYS 2 development board [15].  This board provides a large 
collection of built-in I/O devices, as well as ports for connecting 
additional peripheral modules (Pmods).  Sample Pmods include 
A/D converter, keypad, and H-bridge motor driver. 

VI. KEY INSIGHTS AND LESSONS LEARNED 
During the process of translating the Instructional Processor 

from VHDL to Verilog, several key insights became apparent 
along with lessons learned from refinement of the models.  The 
first minor note is that all signal assignments in an always block 
must use the reg data type, even if modelling combinational 
logic.  This often results in a confusing mix of reg and wire 
declarations like those shown in the example in Fig. 9.  This is 
also an example of where simple syntax translation fails.  
Several iterations were required to ensure the correct signal 
types were used to model specific hardware.   

The next lesson learned occurred using standard libraries.  
Verilog has a robust set of file I/O functions; however, these 
functions did not necessarily perform the same during different 
phases of the design process.  For example, the main memory 
module was initialized from a binary file using the function 
shown in Fig. 14. 

 
//Initialize Memory 
initial $readmemb("program_pwm.bin", MEM4K);   
 

Fig. 14.  Memory initialization using standard file I/O function. 
   

The correct contents and performance of the memory were 
verified via functional simulation.  However, during synthesis 
of the model to an FPGA, an innocuous warning message 
reported that the 4K memory was only partially initialized and, 
therefore, initialization was ignored.  The resulting failure of 
the hardware implementation was difficult to trace, but was 
readily corrected by adding thousands of zeros to the end of the 
binary file. 

Finally, achieving the same hardware timing optimizations 
required very precise modelling techniques to force the 
synthesis tools to recognize specific design elements.  For 
example, the bus connections (BUS_A, BUS_B) were intended 
to use tri-state buffers instead of multiplexers.  This would use 
less FPGA resources and improve system timing.  In VHDL the 
buses can be forced to tri-state buffers by using a simple 
initialization at the beginning of the control process, shown in 
Fig. 15. 

 
-- Control Signal Encoder 
Control : process(STEP, IR, STATUS, PC)   
begin  
  -- Synthesize tri-state buses   
  BUS_A <= (others => 'Z');  
  BUS_B <= (others => 'Z'); 

 
Fig. 15.  Implementation of tri-state buses in VHDL. 

 
In Verilog, however, a signal can be initialized to a one or a 

zero, but not high-impedance.  Assigning this default value to 
the buses required use of a default case statement buried within 

the control signal encoder, as shown in Fig. 16.  Due to the 
multiple nested case statements, several iterations were 
required to find an optimal placement that would be correctly 
recognized by the synthesis tool. 

 
  // Synthesize tristate buses 
  default: 
    begin 
      BUS_A = 'bZ; 
      BUS_B = 'bZ; 
    end 
endcase 
 

Fig. 16.  Implementation of tri-state buses in Verilog. 
 
Once the correct modelling construct was found for the target 

hardware, the synthesis tool was able to replicate the desired 
bus structure and device utilization. 

VII. RESULTS AND CONCLUSIONS 
The VHDL and Verilog models were compiled using the 

Xilinx ISE design tools and behavioral simulations were 
performed using Xilinx iSim.  Signal values were traced in the 
simulations to verify correct operation of the data path and 
control unit as test programs were run.  Both the VHDL and 
Verilog models exactly replicate all register transfers and 
timing for multiple test sequences.  From a simulation 
perspective, the results show that the two models are equivalent. 

The VHDL and Verilog models were next synthesized to the 
target FPGA using Xilinx XST.  Device utilization was 
characterized by the number of 4 input look-up tables (LUTs) 
used by the design.  From a timing perspective, the worst-case 
propagation delay was used to determine the maximum clock 
frequency for the FPGA.  The synthesis results were analyzed 
both with and without the tri-state buffer optimization. 

The synthesis results, before resolution of the tri-state bus 
problem, are summarized in Table I.  The Verilog design, with 
multiplexer routing for the buses, uses 40% more FPGA 
resources.  This results in a significantly longer propagation 
delay and much slower clock frequency (18%).  The synthesis 
results in Table II show that, once the tri-state buses are 
correctly implemented, device utilization is virtually identical.  
Timing results are very consistent and the slight difference (5%) 
can be attributed to the varying order of placement and routing 
of components produced by the VHDL and Verilog versions of 
the synthesis tools.  Both the designs now meet the timing 
requirements to run on the BASYS 2 FPGA prototype board 
with a 50 MHz clock source. 

 
TABLE I 

INITIAL SYNTHESIS RESULTS (VERILOG WITHOUT TRI-STATE BUSES) 
 VHDL Verilog % Difference 
Number of 4 input LUTs 724 1018 40.6% 
Maximum clock frequency 60.6 MHz 46.9 MHz 18.2% 

 
 

TABLE II 
FINAL SYNTHESIS RESULTS 

 VHDL Verilog % Difference 
Number of 4 input LUTs 724 725 0.14% 
Maximum clock frequency 60.6 MHz 57.3 MHz 5.4% 
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Various microcontroller applications were used to 
demonstrate functionality of the hardware implementations.  
These include DC motor speed control via pulse-width 
modulation (PWM) and time-multiplex scanning of a 4 x 4 hex 
input keypad.  Serial I/O was also demonstrated using timing 
loops to send and receive serial data at 9600 baud.  Both the 
VHDL and Verilog versions of the microcontroller were 
successfully able to execute the test programs and interface with 
the external hardware. 

The Instructional Processor has now been translated from its 
original VHDL to an equivalent Verilog model.  By focusing 
on describing each hardware component, rather than just 
revising syntax, the design maintained its functional integrity.  
Simulation results for both models exactly replicate all register 
transfers and timing for multiple test sequences.  The 
synthesized hardware was also very consistent in both device 
utilization and maximum clock frequency.  The project was a 
success and the Instructional Processor continues to achieve its 
goal as a valuable instructional tool [2], [3], now available in 
two languages [4], [16]. 
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