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Abstract 
 

The Naval Postgraduate School’s Department 
of Defense Analysis improves student analytic 
skills by enabling them to make informed, 
rational decisions.  Among the means of 
attaining this end, we emphasize the connection 
between mathematics and its application in real 
problems.  In addition, the use of technology 
(Excel spreadsheets, in this case) facilitates 
inquiry and experimentation as part of the 
modeling and problem solving process.  This 
paper addresses a series of exercises that 
combine mathematical modeling, problem-
solving, inquiry, experimentation, and Excel 
computer simulations. The exercise begins with 
the idea of proportionality, applied immediately 
in a discrete model for population growth.  This 
concept is expanded and modified to create a 
discrete logistic growth model.  Students apply 
this updated population growth model to 
estimate a model parameter for given population 
data.  Next, the students are introduced to a 
discrete model for the position, velocity, and 
acceleration of a falling body.  Then students 
are asked to modify the model to incorporate 
drag that is assumed first to be proportional to 
the object’s velocity and secondly to the square 
of the object’s velocity, and apply their model to 
given data.  Finally, for each assumption, 
students are asked to determine the 
proportionality constant as well as the object’s 
terminal velocity. 
 
 
 
 

Introduction 
 

Students matriculating through the Defense 
Analysis (DA) curriculum at the Naval 
Postgraduate School (NPS) come from a diverse 
background.  Most are mid-level military 
officers from all U.S. services, but we also meet 
civilians from the federal government, as well as 
international officers. One thing most students 
have in common is a limited mathematics 
background and a requirement to make 
informed decisions.  The DA curriculum 
includes a three course mathematics sequence 
featuring mathematical modeling, probability 
and statistics, and game theory.  The intent of 
the sequence is to make the students better 
informed, analytic decision makers.  The 
prerequisite for this three course sequence is 
college algebra.    

 
Our first course covers deterministic modeling, 

including topics such as graphs as models, 
dynamical systems models (implemented using 
Excel spreadsheets), concepts of agent-based 
modeling, model fitting with least squares, and 
an introduction to linear programming models in 
two-variables (graphical) and multi-variable 
(implemented using Excel solver).  Our second 
course introduces stochastic modeling. In this 
course, we review descriptive statistics and 
classical probability, including Bayes’ Theorem, 
basic distributions (binomial, Poisson, uniform, 
exponential, and normal) and their uses in 
modeling   and  reliability  analysis,  and  Monte  
Carlo simulation modeling.  Our third course, 
Models of Conflict, covers a review of expected  
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value for use in decision trees, linear 
programming as a decision tool, and game 
theory.  

 
The span of mathematical abilities found 

among our students reflects national trends, and 
so a good portion of our students exhibit 
deficiencies in basic algebra skills.  College 
algebra constitutes the only prerequisite for our 
courses, but many of our students have not seen 
the material for as little as seven and as long as 
twenty years.  To our advantage, the students 
are nearly uniformly motivated to learn, and 
most quickly re-acquire the necessary algebraic 
proficiency within a few lessons.  Excel is the 
technology platform used in the sequence (since 
it is readily available on most computers), and it 
helps to ease some of the quantitative burdens 
that students might face.  In addition, Excel 
facilitates discovery, inquiry, and model 
implementation.  Many students are already 
familiar with its use; those uninitiated are 
introduced to it and its capabilities through a 
series of in-class exercises.  By the end of the 
first course, the typical student is proficient at 
using Excel for implementing mathematical 
models and making informed decisions from 
them. 

 
This paper describes a sequence of exercises 

from our first course.  The objective of the 
exercises is to begin the process of developing 
student mathematical modeling skills.  

  
Proportionality 

 
We begin the course with a review of some 

mathematical basics, including numbers, 
operations, and especially the equation of a line 
passing between two points.  In this review of 
basic mathematics, we define proportionality by 
stating that “some entity p is proportional to 
another entity q implies that  

 
                        p = k*q                                    (1) 
 
for some constant k.”  Having already reviewed 
the equation of a line, the students understand 
that equation (1) is simply a line through the 
origin in the q-p plane with slope k. 

A  simple,  discrete  growth  model 
 
Next we develop a model for exponential 

growth, in discrete form, by applying the 
definition of proportionality.  The claim is that 
the rate of change in a population, from one 
time period to the next, is proportional to its 
current size.  Defining p(n) to be the population 
size at time n, then by the definition of 
proportionality we have 

 
             p(n+1) – p(n) = r*p(n)                       (2) 
 
where the left hand side of this equation is the 
rate of change in the population from time 
period n to time period n+1, and r is the 
proportionality constant (in bold font to draw 
student attention to form and role). 
 

Writing the difference equation (2) as 
 

               p(n+1) = p(n) + r*p(n)                     (3)  
 
and defining the initial population as p(0) = p0, 
we observe that the population would grow 
exponentially and without bound.  In this form, 
we might consider that r is the growth rate. 
 

During class, students apply this model to the 
growth of money in an account, where r would 
be the interest rate per time period, and n would 
represent time.   
 
Exercise 1 
 

Assume the initial population size is 2, that is, 
p(0) = 2.  Find the population size after 50 time 
intervals, p(50), for various positive values of r.  
Make a conjecture about the behavior of p(n) for 
large n and positive r values. 
 
Exercise 2 
 

What process(es) on the Earth grow without 
bound? 
 
Exercise 3 
 

For the data in following table, estimate the 
growth rate, r. 



COMPUTERS IN EDUCATION JOURNAL  15 
 

Table 1. Time and population data. 
 

time, n p(n) 
0 2 
1 2.14746 
2 2.640809 
3 2.762708 
4 3.325214 
5 3.719376 
6 4.203125 
7 4.269002 
8 4.864998 
9 5.227523 
10 5.56491 
11 6.69713 
12 7.790299 
13 8.152035 
14 9.555009 
15 11.12947 
16 13.25046 
17 15.69848 
18 19.37997 
19 19.8353 
20 22.13117 

 
 

Exercise 4 
 

How many years would it take an initial 
deposit of $1000 to double in value for an 
annual interest rate of 4% (assuming no other 
deposits or withdrawals)?   
 
Exercise 5 
 

The “Rule of 72” claims that it takes n years at 
r% annual interest for an amount to double, 
provided that n* r = 72.  How accurate is this 
model?  Make a table of  the absolute and 
relative error in the “Rule of 72” model for 
various n when r  takes on integer values 
between 1% and 15%. 

 
 
 
 

A  discrete,  logistic  growth  model 
 
Recognizing that environmental conditions 

and competition serve to limit growth by 
establishing a carrying capacity, we modify our 
growth model to incorporate a variable growth 
rate.  We might expect for small population 
sizes that growth might be somewhat akin to 
exponential growth, but that the population 
growth would approach zero when the 
population approaches its environmental 
carrying capacity, M.  A model with these 
properties might look like this:  

 
𝑝(𝑛 + 1) = 𝑝(𝑛) + 𝒌 ∗ (𝟏 + 𝒑(𝒏) 𝑴⁄ ) ∗ 𝑝(𝑛)                                             
                                                                         (4) 

 
This is a discrete form of the logistic growth 

model.  The bold text is meant to draw student 
attention to the form of the model:  though this 
updated model differs from the earlier, simpler 
model, the bold-font term’s place in the 
equation is meant to connote its role in model 
behavior; in this case, rather than a constant 
growth rate, in (4) the rate varies with the 
population size, 𝑝(𝑛). 

 
Exercise 6 
 

Assume the initial population size is 2, p(0) = 
2, and the carrying capacity is 100, M=100.  
Find the population size after 50 time intervals, 
p(50), for various values of 𝑘.   
 
Exercise 7 
 

Let p(0) = 150, let M=100 , and find p(50) for 
various values of 𝑘.   

 
Exercise 8 
 

Data for yeast biomass as a function of time 
(hours) is provided in the table, below.  Assume 
that the yeast biomass is limited to 665 units and 
that it follows a discrete logistic growth model.  
Estimate the growth parameter, 𝑘. 
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Table 2. Time and Yeast biomass data  

Time 
Observed Yeast 

Biomass 
(hrs) p(n) 

0 11.2 
1 18.3 
2 29 
3 47.2 
4 71.1 
5 119.1 
6 174.6 
7 257.3 
8 350.7 
9 441 
10 513.3 
11 559.7 
12 594.8 
13 629.4 
14 640.8 
15 651.1 
16 655.9 
17 659.6 
18 661.8 

 
Summary 

 
Once the students have completed the 

exercises, they should have developed an 
understanding of exponential growth, 
logarithmic growth, and the role of the growth 
rate in the models’ behavior.  With that 
understanding, they should be ready to 
undertake a somewhat more involved model. 

 

Falling  body  problem,  
with  and  without  drag 

 
Galileo’s novel use of an accurate time piece 

allowed him to record a falling object’s position 
at known times.  He then computed the 
differences between positions, which yielded 
average velocity over the time period.  From the 
average velocities, he again computed 
differences which yielded average accelerations.  
His findings:  the accelerations (the second 
differences in position) were essentially 
constant.  It turns out that objects fall at a 
constant acceleration provided that neither 
friction nor buoyancy forces act upon them.  
[Several hundred years later, an Apollo 
astronaut verified Galileo’s model by 
simultaneously releasing a hammer and a 
feather on the lunar surface – they reached the 
surface at the same time.]  However, when an 
object falls in the Earth’s atmosphere, friction 
and buoyancy forces result in non-constant 
acceleration.   

 
The following table contains position (height) 

data recorded as a relatively massive object was 
released to fall through the atmosphere.  Its 
position is recorded every 0.5 seconds and is 
depicted in the second column called “Falling 
body height (feet)”.  The third column contains 
computed positions (heights) based on a model 
for the position of a falling object without drag 
or buoyancy forces.  We will derive that model, 
below. 

 
Table 3. Time, falling body data, and falling body model (without drag) calculated heights. 

 
Time (sec) Falling body data (feet) Model (no drag) heights 

0 200 200 
0.5 195 195 
1 186 182 

1.5 172 161 
2 153 132 

2.5 131 95 
3 107 50 

3.5 82 -3 
4 44 -64 
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Look at the Table 3 and note that the positions 
in the third column decrease (fall) more quickly 
than the recorded data in column two.  This 
should make sense: drag acts to retard the 
downward motion of the object, making the 
object’s position at each time higher than the no 
drag position.  We also note that the first two 
positions are the same for both the falling body 
height and the no drag model (columns 2 and 3 
at times t = 0 and t = 0.5, above).  The reason 
for the first two row entries being the same is 
due to the structure of the no drag model (a 
second-order difference equation), which 
necessitates two known positions from which to 
start.  We will derive the equation for the 
object’s position in the no drag, no buoyancy 
case, and it will be clear why the two positions 
are needed.  Also, we will use the model to 
obtain (verify) the cell entries for column 3.   

 
Those who have had a course in physics may 

recall the importance of a free body diagram.  
We will use one to depict the forces acting upon 
a falling object. 

 
Here the circle represents the object, Fb 

represents the upward acting buoyancy force, Fd 
represents the upward acting drag force, and w 
represents the object’s downward acting weight.  
The arrow with the plus sign indicates that “up” 

 
 

is positive.  For a relatively massive object 
falling in the atmosphere, like the object in our 
problem, we will take the buoyancy force to be 
essentially zero. 

For now, let us assume that there is no drag, 
and let h(n) represent the object’s height at time 
period n.  Let v(n) represent the velocity at time 
period n, and let a(n) represent the acceleration 
at time period n.  The acceleration at time n is 
given by the difference between the velocities at 
times n+1 and n: 

 
               a(n) = v(n+1)  –  v(n).                       (5) 
 
 
 
 
Similarly, the velocity at time n is given by the 
difference in the position at times n+1 and n: 
 
                 v (n)  =  h(n+1)  –  h(n).                 (6) 

 
From (6), it follows that   

 
             v(n+1)  =  h(n+2)  –  h(n+1),             (7) 

 
which represents the velocity at time n+1 
expressed in terms of the associated positions.  
Using the two equations for velocity, (6) and 
(7), we obtain an expression for the acceleration 
in terms of the positions by substituting them 
into (5): 
 
a(n)  =  v(n+1)  –  v(n)  =  [h(n+2)  –  h(n+1)]  –  
[h(n+1)  –  h(n)]                                              (8) 
 
yielding 
       
    a(n)  =  h(n+2)  –   2*h(n+1)  +  h(n).         (9) 
 
Since the only force on the object is the 
propulsive force of its weight, where weight = 
m*g; and since ‘up’ is positive, then this 
downward force will require a negative sign.  
Thus, the propulsive force is given by 
 
                            w   =  – m*g.                      (10)  
 
Since the sum of the forces is equal to mass time 
acceleration (Newton’s Second Law), then for 
the no-drag case  
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                           – m*g   =   m*a(n),             (11) 
 
since there is only one force, the downward 
acting weight.  Dividing by the object’s mass, 
m, and rearranging we obtain: 
 
                             a(n)  =  – g.                       (12) 
 
Substituting (9) into (12) yields   
 
      h(n+2)  –  2*h(n+1)  +  h(n)  =  – g .       (13) 
 
Solving for h(n+2), we obtain: 
 
        h(n+2)  =   2*h(n+1)  –  h(n)  –  g .       (14) 
 
Equation (14) is the difference equation that is 
implemented in column 3, above, for time t = 1 
through t = 4, which corresponds to n = 2 
through n = 8.    
 

Note that we have to be given two positions, 
h(0) = 200 and h(1) = 195, in order to compute 
h(2).  Thus,  h(2)  = 2*h(1)  –  h(0) – g.  If g = 8, 
then  h(2)  =  2*(195)  –  200 –  8  =  182.  (Why 
is the magnitude of the acceleration a constant 
8, rather than 32?  Hint: what is the length of the 
time period in the given data?) 
 
Exercise 9 
 

Implement the no drag model in Excel, and 
obtain a match to column 3 in Table 3. 
 
Exercise 10 
 

Assume that drag force is proportional to 
velocity.  (Think: in which direction does this 
force act? In which direction is the velocity?  
Therefore, be careful with the +/- sign.)  Use 
Newton’s Second Law to obtain a model for the 
position of the falling object under the 
assumption that the drag force is proportional to 
the object’s velocity.  Then incorporate the 
model into a spreadsheet, and obtain an estimate 
for the value of the proportionality constant.  
How good is this model?  What criterion did 
you use to judge its adequacy?   

 

Exercise 11 
 

Assume that the drag force is proportional to 
the velocity squared.  (Again, think: in which 
direction does this force act?  In which direction 
is the velocity? Therefore, be careful with the 
+/- sign.)  Use Newton’s Second Law to obtain 
a model for the position of the falling object 
under the assumption that the drag force is 
proportional to the object’s velocity squared.  
Then incorporate the model into a spreadsheet, 
and obtain an estimate for the value of the 
proportionality constant.  How good is this 
model?  What criterion did you use to judge its 
adequacy?   

 
Exercise 12 
 

If the object were to continue falling (perhaps 
past h = 0), does your model in Exercise 10 
and/or Exercise 11 lead to a terminal velocity?  
If so, then what is it, and how long does a 
falling object take to attain terminal velocity?  
Does the terminal velocity depend on your 
proportionality constant?  If so, then how 
sensitive is the terminal velocity to the value of 
the proportionality constant? 

 
Exercise 13 
 

Might the force due to drag be proportional to 
the velocity raised to some exponent other than 
1 or 2?  If so, then try that model, and comment 
on its adequacy relative to the other models for 
drag. 

 
Conclusion  

 
The modeling and analysis supported by these 

problems are conducive to developing critical 
thinking, an objective of the three course math 
sequence.   The implementation of the models 
into Excel helps to ease some of the quantitative 
burdens, and it facilitates discovery and inquiry.  
The problems described here are substantial aids 
in helping students to become proficient at using 
Excel for implementing mathematical models 
and making informed decisions from them.  
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