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Introduction 

 
The purpose of this work is to show how a 

series of labs can be used to provide students 
with a process that will allow them to become 
efficient and effective users of commercial finite 
element software. The series of labs starts with 
the study of the beam theory and analytical 
solutions for deflections and stresses of a 
cantilever beam that can be used as “exact 
solutions”. Then a solution for the same 
problem is obtained implementing the finite 
element method (FEM) in a Matlab code. This 
ensures that students understand the basic 
concepts of the FEM. The next step is to use 
different types of elements in finite element 
analyses (FEA) implemented in commercial 
software. Advantages of simple elements must 
be identified by students. Convergence of 
results towards exact values as the number of 
degrees of freedom in a finite element model is 
increased must also be noted by students. 
Finally, experiments are carried out to validate 
the FEA results. Thus, this work presents a well-
integrated "lab example" that includes Matlab 
programming, finite element modelling and use 
of commercial FEM software, as well as 
physical verification using test equipment and 
sample beams. 

 
The finite element method (FEM) is an 

engineering tool that allows solving several 
types of engineering problems. The FEM 
consists in discretizing a continuum into small 
finite elements and gives approximate solutions 
of boundary value problems for partial 
differential equations. The FEM is a way to 
define engineering problems in matrix form, 
which represent a set of linear algebraic 
equations. 

 
 

It is relatively easy to create a mesh of finite 
elements using models created in computer 
aided engineering (CAD) software in earlier 
steps during the design process. More recently 
the geometry of the model can be obtained from 
a Magnetic Resonance Imaging (MRI) scanner, 
a Computed Tomography (CT) scanner or a 
laser scanner. The FEM is the major component 
of the Design and Analysis of Mechanical 
Systems course offered at Robert Morris 
University. 

 
To prepare students to work efficiently and 

effectively in the industry using commercial 
FEM software it is necessary to 

 
• Understand the theory and equations of 

the type of problem to be solved e.g. solid 
mechanics, heat transfer, vibration, etc. 

• Recognize that solutions obtained by hand 
of simple problems can be used to check 
that the finite element analysis was set up 
correctly 

• Understand the basics of the FEM, 
including convergence of results as the 
number of degrees of freedom increases 

• Have knowledge and experience using 
different types of elements and their 
corresponding advantages and 
disadvantages 

• When analysis involves a very complex 
geometry, it is necessary to confirm the 
results of the virtual prototype carrying out 
experimental tests with a real prototype. It 
is important to mention here that in the 
industry, the production line only starts 
after experimental tests confirm that the 
design follows all engineering 
specifications. 
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With the above goals in mind, a series of labs 
was developed to solve for the deflection and 
stress of a cantilever Euler-Bernoulli beam 
under a single point load as shown in Figure 1. 
For this problem, consider the following 
geometric properties: length 𝐿𝐿=550 mm, height 
ℎ=12.7 mm (0.5 in) and thickness 𝑡𝑡=63.5 mm 
(2.5 in). A load equal to 𝑚𝑚=4.53 kg (10 lbs.) is 
applied 32.5 mm from its free end as shown in 
Figure 1. Consider the Young Modulus of the 
beam to be equal to 𝐸𝐸=70 GPa and gravity to be 
equal to 𝑔𝑔=9.81 m/s2. 

 
The approaches covered in this course to solve 

for the deflection and stress of the cantilever 
Euler-Bernoulli beam under a point load as 
shown in Figure 1 were 

 
• Analytical solution. This gives a 

theoretical “exact” result and aims to 
provide all necessary background to fully 
understand the beam theory and its use to 
solve the problem. Two approaches are 
presented. The first approach uses the 
double integration of the bending moment, 
and the second approach uses the 
Rayleigh-Ritz method. 

• FEM using Matlab. This approach 
provides a tool to assess that students have 
understood the basics of the FEM. How to 
build a global stiffness matrix, apply loads 
and boundary conditions, and solve for 
displacements and stresses. 

• FEM using Abaqus student version 
(limited to 1000 nodes). Convergence with 
respect to the number of degrees of 
freedom is investigated using two types of 
elements 
o Beam elements (linear and square 
       elements) 
o Hexahedrons (brick) 

Linear beam elements B-31 have two 
nodes and six degrees of freedom per 
node. Quadratic beam elements B-32 have 
three nodes and six degrees of freedom per 
node. 

• FEM Using OptiStruct. Convergence with 
respect to the number of degrees of 
freedom is investigated 
o Using Hexahedrons (brick) 

Hexahedrons Hex8 used in Hypermesh/ 
Optistruct are first order elements with 8 
nodes per element and six degrees of 
freedom per node. Hypermesh/ Optistruct 
were used instead of Abaqus, because that 
was the software available at the time. The 
Abaqus student version is limited to 1000 
nodes and is difficult to produce 
converged results even for this simple 
case. 

• Experimental work 
o Measuring deflection 
o Measuring strains 

 
The author recognizes previous works [1,2,10] 

that include the FEM and testing. Although 
there are similarities between previous works 
and the present work, the idea here is a little bit 
broader, at least with respect to the objective of 
helping students to become effective and 
efficient finite element analysts. In this work, 
different types of solutions are produced: 
analytical, FEA and experimental results. FEA 
include the use of different types of elements. 
The idea of using Abaqus and HyperMesh/ 
Optistruct instead of SolidWorks as in previous 
publications to teach FEM is very appealing to 
the author. This is because Abaqus and 
HyperMesh/Optistruct are specialized FEA 
software, while SolidWorks is a mainly a CAD 
software with FEA capabilities.

                               

                                     
Figure 1. Cantilever beam under concentrated load. 
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It must be clear also that other software and 
hardware than those cited in this work can be 
used to perform the same finite element analysis 
and experimental tests. 

 
Content  of  the  Proposed  Set  of  Labs 

 
The proposed set of labs described below are 

carried out after students have covered the 
basics of the FEM and are able to solve 
problems using spring, bar and beam elements. 
 
Analytical  Solutions 

 
• Double  Integration  Method 

 
After a review of the beam theory [9], students 

are shown how to derive an equation for the 
deflection of the beam using the double 
integration method [9] (as they probably did in a 
“strength of materials” course). Thus, 
considering the bending moment of the beam to 
be 

𝑀𝑀 = −𝐹𝐹𝐹𝐹 
 

The deflection of the beam "𝑦𝑦" can be 
obtained from the relation 

 

                            𝑀𝑀 = 𝐸𝐸𝐸𝐸 d
2𝑦𝑦
d𝑥𝑥2

 
  
Thus 

𝐸𝐸𝐸𝐸
d2𝑦𝑦
dx2

=  −𝐹𝐹𝐹𝐹 
 
Integrating we get an equation for the slope of 

the beam 
 

𝐸𝐸𝐸𝐸
d𝑦𝑦
d𝐹𝐹

=  −
1
2
𝐹𝐹𝐹𝐹2 +  𝐶𝐶1 

 
Integrating again 
 

                 𝐸𝐸𝐸𝐸𝑦𝑦 =  −1
6
𝐹𝐹𝐹𝐹3 +  𝐶𝐶1𝐹𝐹 +  𝐶𝐶2  

 
Using the boundary conditions of the problem 
at 𝐹𝐹 = 𝐿𝐿,     d𝑦𝑦

d𝑥𝑥
= 0     and  at  𝐹𝐹 = 𝐿𝐿,   𝑦𝑦 = 0 

 
From the first boundary condition and the 

equation for the slope of the beam we get 
 

𝐶𝐶1 =  
1
2
𝐹𝐹𝐿𝐿2 

 
From the second boundary condition and the 

equation for the deflection of the beam we get       
                                  

                               𝐶𝐶2 =  −1
3
𝐹𝐹𝐿𝐿3 

 

The equations for the slope of the beam d𝑦𝑦
d𝑥𝑥

  

and the deflection of the beam y are 
 

d𝑦𝑦
d𝐹𝐹

=  
1
𝐸𝐸𝐸𝐸
�−

1
2
𝐹𝐹𝐹𝐹2 +  

1
2
𝐹𝐹𝐿𝐿2� 

 

𝑦𝑦 =
1
𝐸𝐸𝐸𝐸
�−

1
6
𝐹𝐹𝐹𝐹3 +

1
2
𝐹𝐹𝐿𝐿2𝐹𝐹 −

1
3
𝐹𝐹𝐿𝐿3� 

 
The stress 𝜎𝜎 can be obtained from the bending 

moment evaluated at 𝐹𝐹 and the flexural 
equation. Clearly in this case the maximum 
bending moment occurs at 𝐹𝐹 = 𝐿𝐿 

 

                     𝜎𝜎 = My
I

 
 
Where 𝑦𝑦 is the distance from the neutral axis 

to the point of interest and 𝐸𝐸 is the second 
moment of area 

 
For the cross-section of the given beam 
 

 𝑰𝑰 = 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘∗𝒘𝒘𝒉𝒉𝒘𝒘𝒉𝒉𝒘𝒘𝒘𝒘𝟑𝟑

𝟏𝟏𝟏𝟏  
 
• Deflection and Stress Analysis Using the 

Rayleigh-Ritz Method 
 
A second approach to calculate the deflection 

and stress of the beam is to use the Rayleigh-
Ritz method (RRM). The RRM is an energy 
method that consists of carrying out a 
minimization (partial derivatives with respect to 
the unknown coefficients) of the energy terms 
involved in the problem. This minimization 
gives equations to calculate the terms of the 
necessary matrices to solve the problem. It is 
possible to obtain the deflection of a beam using 
the modes of vibration in the mode summation 
method presented by Thomson [6]. Thus, to find 
the displacement of the beam natural 
frequencies and modes of vibration must be 
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computed solving the generalized eigenvalue 
problem below: 

 
[𝐾𝐾]{𝑐𝑐} − 𝜔𝜔2[𝑀𝑀]{𝑐𝑐} = {0} 

 
Where [𝐾𝐾] is the stiffness matrix, [𝑀𝑀] is the 

mass matrix, 𝜔𝜔 is the frequency of oscillation, 
{c} is a vector of unknown coefficients and {0} 
is the null vector. The stiffness matrix is 
obtained from the strain energy of the beam 
defined as [7]: 

 

𝑉𝑉 =
𝐸𝐸𝐸𝐸
2
� �

𝜕𝜕𝜕𝜕(𝐹𝐹)
𝜕𝜕𝐹𝐹2

�
2

𝑑𝑑𝐹𝐹
𝐿𝐿

0
 

 

Where 𝐸𝐸𝐸𝐸 is the flexural rigidity of the beam. 
Similarly, the mass matrix of the beam is 
obtained from the minimization of the kinetic 
energy of the beam defined as [7]: 

 

𝑇𝑇 =
𝜔𝜔2𝜌𝜌𝜌𝜌

2
� 𝜕𝜕(𝐹𝐹)2𝑑𝑑𝐹𝐹
𝐿𝐿

0
 

 
Where 𝜌𝜌 is the density of the material, 𝜌𝜌 is the 

cross-sectional area of the beam and 𝜕𝜕(𝐹𝐹) is 
the deflection shape of the neutral line of the 
beam that can be expressed in terms of the set of 
admissible functions as [7] 

 

𝜕𝜕(𝐹𝐹) = � 𝑎𝑎𝑖𝑖𝜑𝜑𝑖𝑖(𝐹𝐹)
𝑛𝑛

𝑖𝑖=1
 

 
Where 𝜑𝜑𝑖𝑖(𝐹𝐹) represent the set of admissible 

functions that in the classical Rayleigh-Ritz 
method satisfy the boundary conditions of the 
problem. For the problem at hand consider the 
following set of admissible functions: 

 
𝜑𝜑𝑖𝑖(𝐹𝐹) = 𝐹𝐹𝑖𝑖+1 

 
 

The minimization of the strain energy gives 
the terms of the stiffness matrix defined as: 

 

𝐾𝐾𝑖𝑖,𝑗𝑗 = � 𝐸𝐸𝐸𝐸𝜑𝜑𝑖𝑖"(𝐹𝐹)𝜑𝜑𝑗𝑗"(𝐹𝐹)𝑑𝑑𝐹𝐹
𝐿𝐿

0
 

 
Where the double prime indicates the second 

derivative with respect to x. The terms of the 
mass matrix are defined by 

𝑀𝑀𝑖𝑖,𝑗𝑗 =  � 𝜌𝜌𝜌𝜌𝐿𝐿𝜑𝜑𝑖𝑖
𝐿𝐿

0
(𝐹𝐹)𝜑𝜑𝑗𝑗(𝐹𝐹)𝑑𝑑𝐹𝐹 

 
The modes of vibration can be calculated from 

the generalized eigenvalue problem given 
earlier. The eigenvalues are the square of the 
circular natural frequencies, while the 
eigenvectors give the unknown coefficients 𝑋𝑋𝑖𝑖,𝑗𝑗 
of the deflection shape of the neutral axis. The 
ith mode of vibration can be calculated using 

 

𝛹𝛹𝑖𝑖(𝐹𝐹) = � 𝑋𝑋𝑖𝑖,𝑗𝑗𝜑𝜑𝑗𝑗(𝐹𝐹)
𝑛𝑛

𝑖𝑖=1
 

 
Neglecting damping, the forced motion of a 

linear n-degree-of-freedom system is given by 
the non-homogeneous equation of motion [11] 

 
[𝐾𝐾]{𝑦𝑦} + [𝑀𝑀]{�̈�𝑦} = {𝐹𝐹(𝐹𝐹, 𝑡𝑡)} 

 
The response "𝑦𝑦" can be expressed as a linear 

combination of the eigenvectors {Ψi } 
 

𝑦𝑦 = {𝛹𝛹𝑖𝑖}𝑞𝑞𝑖𝑖  
 

Where the generalized coordinates 𝑞𝑞𝑖𝑖  are 
functions of time 𝑡𝑡 and can be viewed as a 
coordinate transformation 

 
[𝐾𝐾][𝛹𝛹]{𝑞𝑞} + [𝑀𝑀][𝛹𝛹]{�̈�𝑞} = {𝐹𝐹(𝐹𝐹, 𝑡𝑡)} 

 
If the modes are mass normalized they can be 

used to uncouple the equations and solve for the 
deflection of the beam using the equation below 
as defined in the work by Thomson [6] 

 
[𝐾𝐾�]{𝑞𝑞} + [𝑀𝑀�]{�̈�𝑞} = [𝐹𝐹�] 

Where 
[𝐾𝐾�] = [𝛹𝛹]T[𝐾𝐾][𝛹𝛹] 
[𝑀𝑀�] = [𝛹𝛹]T[𝑀𝑀][𝛹𝛹] 
[𝐹𝐹�] = [𝛹𝛹]T{𝐹𝐹(𝐹𝐹, 𝑡𝑡)} 

 
because eigenvectors are orthogonal and mass 
normalized  

 
The values of the diagonalized stiffness matrix 

[𝐾𝐾�] are the eigenvalues, while the diagonalized 
mass matrix [𝑀𝑀�] is a unit matrix.  Thus, for a 
static load we get 

 

𝑞𝑞𝑖𝑖 =   𝐹𝐹𝑖𝑖/𝜔𝜔𝑖𝑖
2 
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and the overall response is obtained by 
transforming the responses in generalized 
coordinates 
 

𝑦𝑦 = {𝛹𝛹𝑖𝑖}𝑞𝑞𝑖𝑖 
 
See Matlab code in Appendix A 

 
FEM using Matlab. 

 
Students have to write two different Matlab 

[8] codes to solve for the displacements and 
stresses of the beam as follows: 

 
a) Write a FEM code to solve the problem 

using two elements. The element stiffness 
matrices can be obtained from shape 
functions of the form 

 

𝑁𝑁𝑖𝑖(𝐹𝐹) = 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖(𝐹𝐹/𝐿𝐿) + 𝑐𝑐𝑖𝑖(𝐹𝐹/𝐿𝐿)2 + 𝑑𝑑𝑖𝑖(𝐹𝐹/𝐿𝐿)3 
 
Applying the Rayleigh-Ritz method the terms 

of the stiffness matrix are 
 

𝐾𝐾𝑖𝑖,𝑗𝑗 = � 𝐸𝐸𝐸𝐸𝑁𝑁𝑖𝑖"(𝐹𝐹)𝑁𝑁𝑗𝑗"(𝐹𝐹)𝑑𝑑𝐹𝐹
𝐿𝐿

0
 

 
This gives the terms of matrix K given in 

Appendix B. 
 

b) Modify the Matlab code given in 
Appendix B. Modifications to the code are 
made to define the loading vector, apply 
boundary conditions, and solve for the 
displacements. Then, gather only the 
values corresponding to the deflection of 
the beam and plotting deflection against 
location of the nodes. This approach 
allows assessing the understanding of the 
students of the FEM, including the process 
needed to define the element stiffness 
matrices, their contribution to the global 
stiffness matrix, and keeping track of the 
location and type (translational and 
rotational) degrees of freedom. 

 
FEM Using Beam Elements in Abaqus 
Student Version. 

 
The procedure to carry out the finite element 

analysis in Abaqus [3] using beam elements 
consists of 

a) Defining the geometry of the beam with 
two lines. One line from the free end to the 
location where the load is applied, and a 
second line from the location of the load to 
the constrained end of the beam. 

b) Defining the profile of the beam 
c) Defining material properties (Young’s 

modulus and Poisson’s ratio). 
d) Defining a beam section 
e) Assigning the section to the beam 

geometry and the beam section orientation 
f) Creating an independent instance 
g) Seeding the instance with a size equal to 

0.5 to create a mesh with only two 
elements. 

h) Create mesh using linear beam elements 
(B31: A 2-node linear beam in space) 
[Abaqus]. 

i) Create a step - static general case 
j) Apply boundary conditions and loads 
k) Create and submit a job 
l) Post-processing. The data needed to write 

the report are: element type and 
description, number of elements, number 
of nodes, number of active degrees of 
freedom, location of nodes, deflection at 
the nodes, and stresses in the elements. 

m) Change element type to a quadratic beam 
element B32, create a job, submit a job, 
and post- process. 

n) Comments on the accuracy of both 
Abaqus FEA compared to exact results 
must also be included in the report 

 
FEM Using Brick Elements in Abaqus 
Student Version. 

 
The procedure to carry out the FEA in Abaqus 

using brick elements is 
 
a) Define the geometry of the beam and 

surface where load will be applied 
b) Define material properties (Young’s 

modulus and Poisson’s ratio) 
d) Define a section 
e) Assign the section to the beam 
f) Create an independent instance 
g) Seed the instance 
h) Create mesh using hexahedron elements 
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(C3D8R: An8-node linear brick, reduced 
integration, hourglass control) [Abaqus]. 

i) Create a step - static general case 
j) Apply boundary conditions and loads 
k) Create and submit a job 
l) Post-processing. The data needed to write 

the report are: element type and 
description, number of elements, number 
of nodes, number of active degrees of 
freedom, location of nodes, deflection at 
the nodes, and stresses in the elements. 

 
Students must address the difficulties in 

creating a finite element model that produces 
converged results using the Abaqus student 
version for this simple geometry. The maximum 
number of nodes that can be defined in Abaqus 
student version is 1000. 
 
FEM Using Brick Elements in 
HyperMesh/OptiStruct 

 
a) Open HyperMesh [4] choosing OptiStruct 

as user Profile and import the geometry of 
the beam previously created in CAD and 
saved in an IGES file 

b) Define material properties 
d) Choose PSOLID as the property type and 

select the defined material 
e) Create components 
f) Create Load Collectors to apply loads and 

define constraint 
g) Create load case 
h) Run analysis 
i) Post-processing 
 

Experimental  Work  Deflection 
 
To measure the deflection of the beam 

students used a Heightmatic HDF/Mitutoyo 
device shown together with the cantilever beam 
in Figure 2. This activity is carried out in a 
team. 

 
The procedure to measure the displacement 

with the Heightmatic HDF/Mitutoyo device is 
as follows: 

 
a) Plug in the Heightmatic HDF 
b) Turn it on 

c) Adjust to zero moving the handle at the 
base until a beep is produced 

d) Use the Heightmatic HDF device to ensure 
that the beam is completely horizontal 

e) Load the beam with masses 
f) Measure the deflection of the beam using 

the handle at the base until you hear a beep 
g) Write a Table with the readings of the 

deflection at specific points of the beam 
h) Compare measurements with exact results 

from the Analytical Section. 
 

 
 

Figure 2. Set up of test to measure deflection 
of the beam. 

 
Stress 

 
Stress of the beam was measured using a ¼ 

bridge strain gage as shown in Figure 3, 
connected to a Quantum X (HBM) DAQ and the 
output was visualized on a laptop with catman 
(HBM) software installed. 

 
Use Hooke’s Law below to calculate the stress 

𝜎𝜎 of the beam at the location of the strain gages 
and compare the results with the exact results 
given previously. 

 
𝜎𝜎 = 𝐸𝐸𝐸𝐸 

 
where 𝐸𝐸 is Young’s modulus and 𝐸𝐸 is the strain. 
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Figure 3. ¼ bridge strain gage connection. 
 

Objectives  of  the  Course 
 

The main objectives of the course are 
 
a) Understand the basics of the FEM, 

engineering mechanics and failure 
prevention 

b) Gain experience setting up FEA in 
commercial finite element software, 
including use of different types of 
elements, comparing FEA results with 
expected results and checking 
convergence of the analysis refining the 
mesh. 

c) Gain experience setting up experimental 
tests to validate the results. 

 
The following ABET outcomes [5] are 

applicable for this course according to the 
existing course description: 

 
a) An ability to apply knowledge of 

mathematics, science, and engineering 
b)  An ability to design a system, component, 

or process to meet desired needs within 
realistic constraints such as economic, 
environmental, social, political, ethical, 
health and safety, manufacturability, and 
sustainability 

c)  An ability to identify, formulate, and solve 
engineering problems 

 
Assessment  of  the  Labs 

 
Written reports will be used to evaluate 

students, as well as the outcomes of their 

practical work. One report is required for each 
lab to pace the progress of students and help 
providing feedback to students more frequently. 
The content of each report is 

 

• Cover Page 5% 
• Introduction 15%

 • Procedure 20% 
• Results 30% 
• Conclusions 30% 

 
To ensure learning and teaching success, it is 

important that students present their results in 
writing in an organized way together with 
comments and observations. Conclusions will 
also be used to analyze if students grasped the 
main concepts of the labs. In addition, project-
related questions will be included in the exams 
to gauge student learning. 

 
The rubric used to assess the work of the 

students is given in Table 1. 
 

Conclusions 
 
With this project, the author aims to improve 

students’ skills to perform FEA using 
commercial software with labs that ensure that 
students understand that selecting the right 
element type is a very important factor in the 
finite element analysis. Simpler elements in 
many cases can lead to more accurate results 
and reduce computational cost. This has been 
shown in the labs suggested here, but also 
applies to modeling thin plates using shell 
elements in complex structures. Also by 
carrying out computational experiments setting 
up analysis using different elements, which 
results can be compared with exact results, 
students can gain confidence to become efficient 
and effective users of commercial FEM 
software. Students received an average grade of 
92.4% in the hands-on projects, while the 
average of the final exam of the course was 
76.2%. This data shows that students put more 
effort in the labs than in the theoretical part of 
the course. Experimental results were obtained 
with students working together to get overall 
better results. 
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Table 1. Rubric of the hands-on components of the course. 
 

Component Sophisticated Competent Not yet Competent 
 
 

1.2 FEM using 
Matlab 

 
ABET 

Outcome 
a 

Codes are properly 
implemented showing an 

understanding of how to apply 
boundary conditions, loads and 
keeping track of the degrees of 

freedom of the system. 
Comments and conclusions 

about the differences in 
accuracy of the results are 

provided. 

 
Codes solve displacements, 
but plots of deflection of the 

beam are missing or 
comments and conclusions 

do not reflect a good 
understanding of the results. 

 
 

Codes do not solve the 
problem, comments 

are vague 

 The finite element analysis   

1.3 FEM using 
beam elements 

in Abaqus student 
version 

 
ABET 

Outcome 
c 

must be easily completed 
following instructions during 
class. Results must be correct 

and more importantly 
comments and conclusions must 
state clearly how increasing the 
number of degrees of freedom 
increases the accuracy of the 

results. 

 
There is lack of 

understanding about the 
convergence of the method 
as the number of degrees of 

freedom is increased. 

 
 

Errors in the finite 
element analysis yield 

wrong results and 
conclusions. 

     
1.4 FEM using 
brick elements 

in Abaqus student 
version 

 
ABET 

Outcome 
c 

There is understanding about 
the convergence of the method 

as the number of degrees of 
freedom is increased. 

Different seeding and partition 
techniques are used. 

There is understanding about 
the convergence of the 

method as the number of 
degrees of freedom is 

increased. But different 
seeding and partition 

techniques are not used. 

 
There is lack of 

understanding about 
the convergence of the 
method as the number 
of degrees of freedom 

is increased. 

1.5 FEM using 
brick elements in 

HyperMesh/ 
Optistruct 

There is understanding about 
the convergence of the method 

as the number of degrees of 
freedom is increased. 

 
 

Either results using different 
mesh sizes did not converge 

or results obtained do not 
agree with expected results. 

 
There is lack of 

understanding about 
the convergence of the 

method as the 

ABET 
Outcome 

c 

Results using different mesh 
sizes are used to ensure 

convergence of the method. 

 number of degrees of 
freedom is increased. 

1.6 
Experimental 

work – 
deflection and 

stress 
 

ABET 
Outcome 

e 

There is understanding 
about the procedure on how 

to set up the tests and the 
results match the expected 

results. 
 

Differences between 
measured deflection and 

stresses vs exact results are 
explained clearly. 

Set up the tests is not 
clear, reasons for 

differences between 
measured deflections 
and stresses vs exact 
results are not clearly 

explained. 

Set up of the tests 
is wrong or 

missing, results 
don’t match 

expected results 
and differences 

between measured 
deflection and 

stresses vs exact 
results are not 

explained. 
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APPENDIX A 
 
clear 
close all 
clc 
format long e 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                       RAYLEIGH RITZ METHOD                             % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%                     DEFLECTION SHAPE FUNCTION                    % 
%             The deflection shape function is: (x/L)^(i+1)     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                  DEFINING SOME VARIABLES      % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Number of terms to be used in the deflection shape function  
n=10; 
% Number of points "nn" to be evaluated along the "X" axis.  
nn=300; 
% Total Length of the Beam. 
TL=0.5175; % m  % Location of the load 
% E - Young's Modulus.  
E=70e9;  % Pa 
% Width w and height h 
w=0.0635; % m 
h=0.0127;  % m 
% A - Area 
A=w*h; % m^2 
% Second Moment of Area. 
I=(1/12)*w*h^3;  % m^4 
% rho - Density 
rho=2700; % kg/m^3 
% Defining the point load P. 
P=-(10/2.205)*9.81;  % N 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Defining Stiffness and Mass Matrices K and M.    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for i=1:n 
    for j=1:n 
        K(i,j) = ((i+1)*i*(j+1)*j)/(i+j-1); 
        M(i,j) = 1/(i+j+3); 
    end 
end 
K=(K*E*I)/(TL^3); 
M=M*rho*A*TL; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   Solving the eigenproblem          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% [V,D] = EIG(K,M) produces a diagonal matrix D of generalized 
% eigenvalues and a full matrix V whose columns are the 
% corresponding eigenvectors so that K*V = M*V*D. 
[X,w] = eig(K,M); 
% Changing the results for w from a square matrix to a column vector.  
w=diag(w); 
% Natural frequencies in Hz 
Nat_Freq=sqrt(w)/(2*pi); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                  PLOTTING THE EIGENVECTORS                              % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Describing PHI 
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PHI(n,nn,n)=0; 
for i=1:n 
    for j=1:nn 
        for k=1:n 
            PHI(i,j,k)=X(k,i)*(((j/nn))^(k+1)); 
        end 
    end 
end 
DISP=zeros(n,nn); 
for i=1:n 
    for j=1:nn 
        for k=1:n 
            DISP(i,j)=DISP(i,j)+PHI(i,j,k); 
        end 
    end 
end 
% Choosing the number of modes to be plotted. 
% A maximum of eight Modes will be plotted. 
% If n is smaller than eight, n Modes will be plotted. 
if n>=8 
    nm=8; 
    else 
    nm=n; 
end 
% Building a vector containing the location of the points evaluated along 
% the axis "X". 
xp=0.0:(TL/nn):TL; 
for i=1:nm 
    f = figure('Position',[50 50 900 600]); 
    plot(xp,[0,DISP(i,:)]) 
    str = int2str(i); 
    title(['Mode ' int2str(i) ' of Vibration of a Cantilever Beam'],'FontSize',14) 
    hx1=xlabel('Normalized Length of the Beam'); 
    hy1=ylabel('Deflection of the Beam'); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%         POINT LOAD AT THE FREE END OF THE BEAM        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Applying a load at the tip end of the cantilever beam. 
% The vector qgen of generalized coordinates is found to be: 
for i=1:n 
    qgen(i)=P*DISP(i,nn)/w(i); 
end 
% Transformation to the space coordinates  
Usol=zeros(nn); 
Usolution=zeros(nn,1); 
for j=1:nn 
    for i=1:n 
        Usolution(j)=Usolution(j)+DISP(i,j)*qgen(i); 
    end 
end 
Usolplot(1)=0; 
for i=1:nn 
    Usolplot(1+i)=Usolution(i); 
end 
  
plot(xp,Usolplot) 
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APPENDIX B 
 

clear all 
clc 
close all 
format long e 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% DEFINITION OF SOME VARIABLES 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Defining the Number of Elements of the Beam. 
n=207; 
% Defining the Total Length of the Beam. 
TL=0.550; %[m] 
% Defining the Length of each element. Elements are considered to be identical. 
L=TL/n; %[m] 
% E - Young's Modulus. 
E=; %[Pa] 
% I Second Moment of Area. 
I=; %[m^4] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Defining the stiffness matrix K of a beam element 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
K(1,1)=12*E*I/(L^3); 
K(1,2)=6*E*I/(L^2); 
K(1,3)=-12*E*I/(L^3); 
K(1,4)=6*E*I/(L^2); 
K(2,1)=6*E*I/(L^2); 
K(2,2)=4*E*I/L; 
K(2,3)=6*E*I/(L^2); 
K(2,4)=2*E*I/L; 
K(3,1)=-12*E*I/(L^3); 
K(3,2)=-6*E*I/(L^2); 
K(3,3)=12*E*I/(L^3); 
K(3,4)= -6*E*I/(L^2); 
K(4,1)=6*E*I/(L^2); 
K(4,2)=2*E*I/L; 
K(4,3)= -6*E*I/(L^2); 
K(4,4)=4*E*I/L; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% DEFINING THE GLOBAL STIFFNESS MATRIX KT OF THE SYSTEM  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Terms in the first two rows and first two columns are defined only by the first element. 
KT=zeros(2+2*n); 
KT(1,1)=K(1,1); 
KT(1,2)=K(1,2); 
KT(1,3)=K(1,3); 
KT(1,4)=K(1,4); 
KT(2,1)=K(2,1); 
KT(2,2)=K(2,2); 
KT(2,3)=K(2,3); 
KT(2,4)=K(2,4); 
KT(3,1)=K(3,1); 
KT(3,2)=K(3,2); 
KT(4,1)=K(4,1); 
KT(4,2)=K(4,2); 
% Defining the terms with contribution from only one element. 
for i=1:n-2; 

   KT(3+2*i,1+2*i)=K(3,1); 
KT(3+2*i,2+2*i)=K(3,2); 
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KT(4+2*i,1+2*i)=K(4,1); 
KT(4+2*i,2+2*i)=K(4,2); 
% Using the symmetry of the stiffness matrix. 
KT(1+2*i,3+2*i)=KT(3+2*i,1+2*i); 
KT(2+2*i,3+2*i)=KT(3+2*i,2+2*i); 
KT(1+2*i,4+2*i)=KT(4+2*i,1+2*i); 
KT(2+2*i,4+2*i)=KT(4+2*i,2+2*i); 

end 
% Defining the terms with contribution from two elements. 
for i=0:n-2; 

KT(3+2*i,3+2*i)=K(3,3)+K(1,1); 
KT(3+2*i,4+2*i)=K(3,4)+K(1,2); 
KT(4+2*i,3+2*i)=K(4,3)+K(2,1); 
KT(4+2*i,4+2*i)=K(4,4)+K(2,2); 

end 
% The last two rows and columns are defined only by the last element. 
KT(2*n-1,1+2*n)=K(1,3); 
KT(2*n-1,2+2*n)=K(1,4); 
KT(2*n,1+2*n)= K(2,3); 
KT(2*n,2+2*n)= K(2,4); 
KT(1+2*n,2*n-1)=K(3,1); 
KT(1+2*n,2*n)= K(3,2); 
KT(1+2*n,1+2*n)=K(3,3); 
KT(1+2*n,2+2*n)=K(3,4); 
KT(2+2*n,2*n-1)=K(4,1); 
KT(2+2*n,2*n)= K(4,2); 
KT(2+2*n,1+2*n)=K(4,3); 
KT(2+2*n,2+2*n)=K(4,4); 
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