
2 COMPUTERS IN EDUCATION JOURNAL

TEACHING SOFTWARE REQUIREMENTS INSPECTIONS TO
SOFTWARE ENGINEERING STUDENTS THROUGH PRACTICAL

TRAINING AND REFLECTION

Anurag Goswami, Gursimran Singh Walia
Computer Science Department
North Dakota State University

Introduction

There is a growing demand for software

developers that is expected to grow even more in the
coming years [1,2] It is important to ensure that
students graduating are prepared for their future
careers in the software industry. However, multiple
researchers have reported that software engineering
(SE) graduates lack the necessary skills or abilities
to find employment in the software industry [3-5].
For example, Simmons et al., reported that students
are not familiar with software development
processes when beginning their jobs in industry and
that curricula should put more emphasis on
requirement gathering and elicitation techniques [6].
Additionally, an extensive systematic literature
review empirically evaluated knowledge deficiency
of graduating CS/SE students and revealed
“Software Engineering Practices” (e.g.,
requirements, life cycle, and quality assurance) as a
major category [7].

In software industries, requirements development

is one of the earliest phases of Software
Development Life Cycle (SDLC). It is a critical
phase where software requirements are gathered
from different stakeholders (both technical and non-
technical), and written using Natural Language (NL)
in a formal document known as Software
Requirements Specification (SRS) [8]. Due to the
inherent nature of NL (i.e. ambiguity, imprecision,
and vagueness) [9], faults are committed during the
development of SRS. Therefore, industries are
focused on detecting and fixing faults at early phases
of SDLC to avoid any rework effort and costs to fix
faults at later stages of development [10]. To do so,
software inspections [11], are used wherein skilled
individuals review a software artifact to find and
report faults.

Software industries (e.g., Microsoft) routinely

provides inspection training to educate their
developers about the process, importance, and
benefits of inspections. Due to the importance of
inspections in software industry (i.e. to save rework

cost, effort, and time), academia should also
prioritize training students with early quality
assurance skills (i.e. inspections) during SDLC.
Therefore, this research reports the results from a
practical training experience to help students
improve their understanding of inspection which in
turn, would improve their inspection performance.
This paper presents results of an academic study on
the effect of reflection (training) technique on
thirteen graduate and twenty-six undergraduate
students on their inspection performance. The
participants individually inspected two different
requirement documents using fault-checklist method
and recorded faults pre and post reflection. We
analyzed the impact of reflection by calculating
individual pre and post reflection inspection
performance and by taking class average for
undergraduate and graduate students. The results
show that post reflection, inspection understanding
and performance increases for both undergraduate
and graduate students.

Background

This section describes the fault-checklist based

inspection technique and its steps along with various
other fault detection techniques that are used to
detect and report faults.

Inspection, as described by Fagan [12], is a

systematic technique to examine a software artifact in
detail. Evidence showed the benefits of inspection on
artifacts developed at different phases of software
development (e.g., requirement, design, code,
interfaces) [13]. Inspections takes place in different
steps which involves: a) Selecting skilled individuals/
inspectors, b) Individual review to find faults, c)
Team meeting to consolidate faults, d) Follow-up and
repair.

There are many variations on Fagan’s original

concepts [14,15] that emphasize different parts of
the process (e.g. placing more emphasis on the
individual preparation phase and less emphasis
on the team meeting phase). Regardless of whether

COMPUTERS IN EDUCATION JOURNAL 3

there is a team meeting, the effectiveness of the
individuals significantly impacts the overall
effectiveness of the inspection [16]. During the use
of inspection technique, inspectors are given a set of
checklists and printed form which guides them on
how to perform inspection [17]. Based on the
knowledge from checklist regarding the type of
faults (example in Figure 1), inspectors read through
the software artifact (here requirements document)
to detect and report faults in fault form.

Figure 1. Fault types in the fault checklist form.

Experiment Design

The goal of this study was to investigate whether

experiential learning of reviewing software artifact
aided by an individual’s reflection on their
inspection results can lead to an improved
understanding of requirements inspection process
and an improvement in their abilities to find real
software faults during the inspection. To accomplish
this goal, a controlled empirical study involved
undergraduate and graduate students enrolled in SE
courses at North Dakota State University (NDSU).
During the course, the subjects performed
inspections of two industrial strength software
requirement artifacts that were seeded with real
software defects. For first inspection, students were

trained on fault checklist based requirements
inspection. The students then performed an
individual inspection of requirements document and
reported the faults found during the inspection. Next,
the subjects were provided an actual list of seeded
faults and were asked to read through the fault
descriptions and reflect upon the faults found
(reported) and missed during the inspection. For
second inspection cycle, each participant performed
an individual inspection using the same fault
checklist on a different requirements document and
reported faults. The fault data (e.g., reported and
missed faults, true faults and false positives, fault
descriptions) were collected and analyzed pre and
post reflection to understand the nature of
improvement in their inspection abilities and their
understanding of the inspection process. The
remainder of the section provides details of the study
goals and metrics, requirement artifacts, students,
and study procedure in the following sub sections.

Research Goal: The major goal of this study was to

investigate whether students’ understanding of
requirement faults and their inspection performance
improve after hands-on practice and reflection. Our
research questions are postulated in the GQ format
[18] (Figure 2) and briefly described below.

RQ1 investigates whether the students are able to

detect a larger number of faults post reflection (i.e.,
during the second inspection)? RQ2 investigates
whether students’ find faults faster (i.e., increase in
fault rate) during the second inspection? Finally,
RQ3 evaluates the quality of the description of the
faults reported by the students’ pre and post
reflection? RQ4 investigates the improvement in
terms of the percentage of true faults vs. fault
positives post reflection?

Figure 2. Research questions in Goal-Question (GQ) format.

4 COMPUTERS IN EDUCATION JOURNAL

Participating Subjects: Twenty six under-graduate
students enrolled in System Analysis and Design
course along with thirteen graduate students enrolled
in Requirements Engineering course at NDSU
participated in this study. System Analysis and
Design course covers the requirements and design
development and the required skills for planning,
analysis, and design of software system. Similarly,
Requirements Engineering course focuses especially
on requirement development tasks and technique
along with requirement inspection technique. Both
the courses required the students to learn about
software inspections and their impact on the software
quality improvement. Students in both the courses
had an average of two years of software development
experience in past (i.e. classroom projects,
assignments, and industry).

Artifact: Two externally developed industrial
strength requirement documents (Table I), Loan
Arranger System (LAS) and Parking Garage Control
System (PGCS), were inspected by each participant
during two inspection cycles. Both the documents
were written in plain English, developed by
Microsoft developers, and have been used in several

inspection studies (for comparing different
inspection techniques) as well as by Microsoft to
train their employees on the inspection process at
Microsoft [19,20]. In terms of the length of
documents, LAS was 11 pages long seeded with 30
realistic faults whereas PGCS was 14 pages long
seeded with 34 faults. The seeding of the faults was
done by Microsoft researchers to represent realistic
faults committed by Microsoft developers. Both the
documents were selected because both came from
the same organization (Microsoft) and were similar
in size and fault density (i.e. 2.72 and 2.42 faults per
page for LAS and PGCS respectively).

Experiment Procedure: The experiment steps are
described below and shown in Figure 3:

Training 1 - Training on inspecting SRS for faults:

During this step, students in both classes were trained
by the same instructor during an in-class session of
70 minutes on how to use fault- checklist technique
to detect and report different types of faults in SRS
in a fault list. During the training, students were
provided a small subset of requirements for a Gas
Station Control System (GSCS) and were asked to

Table I. Artifacts used for inspection.

Inspection Cycle Artifact name Description Number of

seeded faults
Number of
inspectors

1 – Pre- reflection Loan Arranger
System (LAS)

Online system for loan bundling based on
user characteristics

30 26 (Undergrad)
13 (Grad)

2- Post- reflection Parking Garage
Control System

(PGCS)

Provides automated entry and exit of
vehicles based on card/ticket

34

26 (Undergrad)
13 (Grad)

Figure 3. Experiment Procedure.

COMPUTERS IN EDUCATION JOURNAL 5

find faults which were then discussed in class to
prepare them for the first inspection cycle.

Step 1 – First inspection: Inspecting LAS SRS for

faults: Next, the subjects individually inspected the
LAS document (that was handed to each participant)
using the fault checklist technique and reported
faults along with timestamp when each fault was
found. In addition, the fault reporting form required
the subjects to classify the faults identified during
the inspection into one of the following fault types:
Omission (O), Ambiguous Information (A),
Inconsistent Information (II), Incorrect Fact (IF),
Extraneous (E), and Miscellaneous (M). At the end
of the inspections, thirty nine fault lists (from 26
undergraduate and 13 graduate students) were
collected for analysis.

Step 2 – Reflection of LAS inspection results: One of

the researchers evaluated the faults reported by each
participant in both the courses and provided them
feedback about true faults and false positives.
Students were also informed of the faults that lacked
a clear and precise description of why (and where) it
represented a problem in the requirements. Next,
post inspection reflection document (sample in Table
II.) was performed in-class wherein, participants
were handed a complete list of the 30 faults in the
LAS document. Students were asked to read through
the actual fault descriptions and to comment on
whether they agree (and explain if they disagree) on
the fault? Whether they were able to find that fault?
and if they were able to report them? Reading
through the first row of Table II, each column is
described as follows:

• Defect#: represents the defect ID in seeded
fault list.

• Req.#: indicates the requirement ID(s) where
fault is present.

• Type: denotes students about fault category
to which a fault belongs. For example, A in
the first row represents an ambiguity (A) in
the requirements.

• Description: explains the fault in enough
detail for readers to understand.

• Is it a defect?: this column required students
to agree or disagree whether the fault
described represents an actual requirement
problem.

• Did you see this?: students reported whether
they were able to see this fault (in the form of
‘yes’ or ‘no’) during the inspection.

• Did you report this?: students reported (in
the form of ‘yes’ or ‘no’) whether they
reported this fault during inspection of LAS
document.

• Explain: this column needs a brief
description by the students about their
response.

The goal of the reflection document was to enable

participants to gain insights in the inspection process
and to help them reflect on the reasons behind the
faults they missed or they saw but not reported in
their fault list. The students were also told to read
through the fault descriptions to be able to improve
their fault report quality.

Training 2 – Reflection discussion and recap for

re-inspection: The students were asked to discuss
any doubts in the reflection of faults with the trainer
and were given a quick recap of fault-checklist based
inspection technique.

Step 3 – Inspecting PGCS requirements: Next,

each participant received the second PGCS
document along with the fault form (that they had
used during the first inspection) and were asked to
perform an individual inspection to identify and
record faults based on the feedback from reflection.
Like the first inspection, participants were required
to mention start and end time of inspection along
with the timestamp when they found each fault and
to classify the faults into fault types. At the end of
the inspections, thirty-nine new fault lists (one per
student) were collected for analysis.

Data Collection

This section describes the raw data collected during

the study along with the data that was computed from

Table II. Sample of reflection form for LAS document.

6 COMPUTERS IN EDUCATION JOURNAL

raw data to calculate inspection performance (shown
in Figure 4) for each participant for both requirement
documents (i.e. LAS and PGCS). The raw data
variables are described below:

• M1: Total faults (Tsf): denotes the number
of total faults seeded in the requirements
document. In this experiment, LAS
contained 30 and PGCS had 34 seeded faults.

• M2: Total number of faults reported (Tf):
denotes the total number of faults (i.e. count
of all faults reported) reported by the
subjects in their fault reporting form. This is
the raw count prior to any evaluation of the
correctness of the faults reported by the
subjects. This was done to compare the true
and false positive counts when comparing
pre and post reflection results.

• M3: Inspection time (It) - is the measure of
total time (in minutes) taken by each
participant to perform the inspection of an
SRS document. M3 was calculated by
comparing the starting and finish times for
each participant and for each inspection
cycle.

Below are the calculated variables from raw

inspection data described above:

• M4: Total number of false positives (Tfp): one
of the researcher’s read through fault list of
each participant to identify the number of false
positives

• M5: Inspection effectiveness (Te) - after
removing fault positives (Tfp) from the total
fault count (Tf), the number of actual faults for

each participant was calculated. This was
computed pre and post reflection to evaluate
the improvement in their inspection accuracy
(discussed next). Te = Tf - Tfp

• M6: Inspection Accuracy (Ia) – is measured as
the percentage of inspection effectiveness (Te)
in terms of the total fault count (Tsf).
Inspection accuracy was computed pre and
post reflection as; Ia = (Te/Tsf)*100

• M7: Inspection efficiency (Ie) - measured as the
total number of faults (Te) found per hour. This
was done to evaluate if the subjects were able
to find faults faster post reflection and
computed as: Ie = (Te/It)*60

• M8: Fault description score (FDs) and M9:
Fault description quality (Qfd) -– for each
inspector, it is the summation of binary score
of 0 (not well described) or 1 (well described)
for a fault description of each fault out of total
faults detected. The idea behind is that, the
author of the document should be able to
understand and correct the faults without
discussing with the inspector(s). Using the
same criterion, one of the researcher read
through the fault descriptions to understand
clearly where fault occurred in SRS and why it
represented a problem without talking to the
inspectors. If a fault was well described, then it
was marked as 1 otherwise 0. For example, if
out of total 20 faults, only 10 faults were
described in well understood form (i.e. with a
score of 1 for 10 faults and a score of 0 for
other 10); then the fault description score will
be 10 for that particular inspector. This was
done to calculate M9 of each fault list pre and
post reflection. For each inspector and each

Figure 4. Research questions along with various metrics used.

COMPUTERS IN EDUCATION JOURNAL 7

inspection cycle, M9 was measured as the
percentage of faults that are described in a well
understood form out of total inspection
effectiveness (Te). Qfd = (FDs/Te)*100

For example, out of total 20 faults (i.e Te) fault
description score is 10 (FDs) then the fault
description quality will be: (10/20)*100 = 50%.

We compared the average score of inspection

performance from metrics (described above) during
the first inspection (i.e. pre reflection) vs. during the
second inspection (i.e., post reflection) for
participants in both the courses to evaluate the
improvement in the students’ inspection
performance. Table III represents a sample pre and
post inspection data for one student. The columns
are arranged (from left to right) in the same fashion
as metrics are described above. Based on the data
from one student, during the second inspection,
he/she reported fewer total faults (10 vs. 17), spent
less time to find those faults (i.e., 25 minutes vs. 70
minutes), yet found more true faults (4 vs. 2), and
reported less fault positives (6 vs. 15). Inspection
effectiveness, accuracy and efficiency and fault
descriptions improved visibly after training and
reflection. The next section analyzes whether similar
patterns were seen across all the subjects.

Analysis and Results

This section reports the improvement in the

understanding of requirements inspections and fault
detection abilities of the students from first to second
inspection cycle. The results are organized around the
four research questions (see Figure 4):

1) RQ1: Does inspection effectiveness of

inspectors improves after using reflection technique?

To provide an overview of the effectiveness results,

students were able to find a larger number of true

faults (Te) during the second inspection (PGCS) as
compared to the first inspection (LAS document).
Figure 5 compares the average inspection
effectiveness (solid fill for graduate students and
pattern fill for undergraduate students) pre (using
LAS document) and post (PGCS document)
reflection. The results show that, graduate students
found an average of 4.85 faults during the second
inspection (vs. 4.23 faults during the first inspection)
and undergraduate students found an average of 5.04
faults (vs. 4.35 faults) during the second inspection.
These results show that, effectiveness (the number of
actual faults detected) during inspections increased
for both graduate and undergraduate students. This
was consistent across all the subjects. Additionally,
the increase was larger for the undergraduate students
which could have been due to the size effect (i.e.,
larger number of students). The results from paired
samples t-test (p=0.49 for graduates and p=0.16 for
undergraduate students) showed that the
effectiveness increase was not statistically
significant. Therefore, based on this result, while the
experiential learning (and reflection) helped students
detect a larger number of faults, the increase was not
significant.

Figure 5. Comparison of inspection effectiveness
before and after reflection.

Table III. Sample data of one inspector before and after reflection.

8 COMPUTERS IN EDUCATION JOURNAL

2) RQ2: Does the inspection efficiency is
increased after reflection?

This research question compares the rate at which

students found faults (i.e. inspection efficiency – Ie)
during the first and second inspection. Figure 6
shows the average inspection efficiency of graduate
(solid fill) and undergraduate students (pattern fill)
pre and post reflection. Results from Figure 6 shows
that post reflection (i.e. during the second
inspection), students found faults faster as compared
to the first inspection. The results from a paired
samples t-test showed that inspection efficiency
significantly improved for both graduate (p=0.004)
and undergraduate (p<0.001) students post
reflection. This is a significant results and signify
that, the students’ learning curve was significantly
enhanced after having performed an inspection and
reflecting upon their mistakes and the fault they
should have found.

Figure 6. Comparison of inspection efficiency
among graduate and undergraduate students before
and after reflection.

3) RQ3: Does fault description quality improves
after reflection?

This research question investigates whether

inspectors described faults more clearly in fault
reporting form during inspection after reading
through the clear descriptions in the reflection
document. Table IV is an example of fault
description of one of the inspectors before and after
reflection process. As seen in Table IV, the
descriptions are structured in more understandable
manner while still being concise post inspection. To
quantify the description quality, we compared the
average Fault description score for both courses pre
and post reflection (Figure 7).

Table IV. Example of fault description quality

before and after reflection technique.

Figure 7 compares the fault description quality
among graduate (solid fill) and undergraduate
students (pattern fill) as requirements inspectors
before and after reflection. The results in Figure 7
shows that fault description quality of both graduate
and undergraduate students increased after they went
through reflection technique. To evaluate the
statistical significance, we performed paired samples
t-test which showed that reflection had a strong and
significant impact on the fault description quality for
both graduate (p=0.003) and undergraduate
(p=0.004) students. Therefore, the experiential
learning help students report more clear and
understandable fault descriptions.

Figure 7. Comparison of fault description quality
score among graduate and undergraduate students
before and after reflection.

4) RQ4: Does inspection accuracy of inspectors
improves post reflection?

As mentioned earlier, inspection accuracy

(calculated as the percentage effectiveness out of
total number of seeded faults) was compared during
the two inspection cycles. The percentage was
computed to normalize the comparison between two
documents that had a different number of seeded
faults. A comparison of the inspection accuracy is
shown in Figure 8. The results show that, students
reported higher inspection accuracy post reflection
as compared to the first inspection. Yet again, the
increase was higher for the undergraduates as
compared to the graduate students.

COMPUTERS IN EDUCATION JOURNAL 9

Figure 8. Comparison of inspection accuracy before
and after reflection.

To gain more insights into the accuracy results, we

calculated the percentage of inspection false positive
data from pre and post reflection. It was the ratio of
false positives (Tfp) to the number faults seeded
(Tsf). It was found that, students reported a large
number of false positives during the second
inspection which impacted their results. This could
have been biased by a couple of reasons. First, the
students were told that they would be graded on their
performance during the second inspection (since
they have already done it once and have had a
chance to review their mistakes). This might have
negatively motivated them to report as many faults
as possible to show that their effort during the
inspection exercise. Second, the students still tend to
think a lot in terms of the missing design details
(which is outside the scope of functional
requirements) and that needs to be talked more in
class for them to be able to differentiate between
true faults and false positives.

Discussion of Results

The major focus of this study was to investigate

whether experiential learning aided by the reflection
technique can lead to a better understanding of
requirements inspection which in turn, leads to an
improved inspection performance. Based on the
results, it is evident that reflection technique helped
students understand the inspection process better
which leads to an improved inspection outcome (i.e.
effectiveness, efficiency, and description quality).

Inspection accuracy was almost equal for both

graduate and undergraduate students which might be
due to the fact that students learn more on how to
design and code and not enough time is spent on
helping students to read or write functional
requirements. This makes it difficult for students to
differentiate between missing information or

ambiguity in the requirements description (a type of
requirements fault) and missing design information
(often outside the scope of requirements) during the
review of information contained in the SRS. This
was a big reason that the students still report (even
post reflection) a larger frequency of false positive
faults. Interestingly, undergraduate students
performed better than the graduate students in terms
of their inspection performance both before and after
reflection. This is in accordance with the studies
[21,22] at Microsoft, wherein level of the technical
education (Bachelors vs. Masters vs. Doctorate) did
not had a significant impact on the inspection
performance of professional developers. Therefore,
unlike other aspects of software development,
inspections may rely more on the inherent abilities of
the students to comprehend and process natural
language information contained in requirements
document. We plan to evaluate this aspect in future
studies in hopes of further improving the
performance of students learning software
inspections in classroom settings.

Conclusion and Future Work

Based on the results from our study, reflection

techniques do help students in better understanding
of fault-checklist based requirements inspection
technique and can lead to higher inspection output.
Results also exhibits that, reflection technique can be
used by academicians for reducing skill gap between
academia and industry by helping students acquire
the required inspection skills in experiential form.
While this paper reports the use of experiential
learning in the context of teaching requirement
inspections to the students, it can be used for training
other needed software skills (e.g., writing quality
code, developing requirements/design document,
etc). These results motivate us for further
investigation. Our immediate future work would
include replicating the study for non-technical
inspectors for generalizing our results. Another
future work is how students’ cognitive ability to
comprehend information could have an impact on
software development task(s).

References

1. Samson, T.: ‘Demand for software engineers keeps

climbing -- and so do the salaries’, InfoWorld,2015.

2. Sayed, D.: ‘Technology pay rates rising faster than

the general labor market’, Applied HR Strategies
(AHRS) Client Alert,2015.

10 COMPUTERS IN EDUCATION JOURNAL

3. Begel, A., and Simon, B.: ‘Struggles of new
college graduates in their first software
development job’. Proc. ACM SIGCSE
Bulletin2008.

4. Haddad, H.: ‘Post-graduate assessment of CS

students: experience and position paper’, Journal of
Computing Sciences in Colleges, 2002, 18, (2), pp.
189-197.

5. Radermacher, A., Walia, G., and Knudson, D.:

‘Missed Expectations: Where CS Students Fall
Short in the Software Industry’, CrossTalk Mag.-J.
Def. Softw. Eng., no. Jan/Feb, 2015, pp. 4-8.

6. Simmons, C.B., and Simmons, L.L.: ‘Gaps in the

computer science curriculum: an exploratory study
of industry professionals’, Journal of Computing
Sciences in Colleges, 2010, 25, (5), pp. 60-65.

7. Radermacher, A., and Walia, G.: ‘Gaps between

industry expectations and the abilities of graduates’.
Proceeding of the 44th ACM technical symposium
on Computer science education2013.

8. Goswami, A., and Walia, G.: ‘An empirical study

of the effect of learning styles on the faults found
during the software requirements inspection’. Proc.
Software Reliability Engineering (ISSRE), 2013
IEEE 24th International Symposium on, Pasadena,
CA, 4-7 Nov. 2013.

9. Berry, D.M.: ‘Ambiguity in natural language

requirements documents’: ‘Innovations for
Requirement Analysis. From Stakeholders’ Needs
to Formal Designs’ (Springer, 2008), pp. 1-7.

10. Perry, W.E.: ‘Effective Methods for Software

Testing: Includes Complete Guidelines, Checklists,
and Templates’ (John Wiley & Sons, 2006).

11. Ackerman, A.F., Buchwald, L.S., and Lewski,

F.H.: ‘Software inspections: an effective
verification process’, Software, IEEE, 1989, 6, (3),
pp. 31-36.

12. Fagan, M.E.: ‘Advances in software inspections’:

‘Pioneers and Their Contributions to Software
Engineering’ (Springer, 2001), pp. 335-360.

13. Fagan, M.E.: ‘Design and code inspections to

reduce errors in program development’: ‘Pioneers
and Their Contributions to Software Engineering’
(Springer, 2001), pp. 301-334.

14. Martin, J., and Tsai, W.T.: ‘N-fold inspection: A

requirements analysis technique’, Communications
of the ACM, 1990, 33, (2), pp. 225-232.

15. Parnas, D.L., and Weiss, D.M.: ‘Active design

reviews: principles and practices’, Journal of
Systems and Software, 1987, 7, (4), pp. 259-265.

16. Porter, A., Siy, H., Mockus, A., and Votta, L.:

‘Understanding the sources of variation in software
inspections’, ACM Transactions on Software
Engineering and Methodology (TOSEM), 1998, 7,
(1), pp. 41-79.

17. Parnas, D.L., and Lawford, M.: ‘The role of

inspection in software quality assurance’, Software
Engineering, IEEE Transactions on, 2003, 29, (8),
pp. 674-676.

18. Van Solingen, R., Basili, V., Caldiera, G., and

Rombach, H.D.: ‘Goal question metric (gqm)
approach’, Encyclopedia of Software Engineering,
2002.

19. Shull, F., Carver, J., and Travassos, G.H.: ‘An

empirical methodology for introducing software
processes’, ACM SIGSOFT Software Engineering
Notes, 2001, 26, (5), pp. 288-296.

20. Carver, J., Shull, F., and Basili, V.: ‘Observational

studies to accelerate process experience in
classroom studies: an evaluation’. Proc. Empirical
Software Engineering, 2003. ISESE 2003.
Proceedings. 2003 International Symposium on
2003.

21. Carver, J.: ‘The impact of background and

experience on software inspections’, Empirical
Software Engineering, 2004, 9, (3), pp. 259-262.

22. Carver, J.C., Nagappan, N., and Page, A.: ‘The

impact of educational background on the
effectiveness of requirements inspections: An
empirical study’, Software Engineering, IEEE
Transactions on, 2008, 34, (6), pp. 800-812

Biographical Information

Anurag Goswami is a Ph.D. Candidate in the

department of Computer Science at North Dakota State
University. His main research interests include empirical
software engineering, human factors in software
engineering, and software quality.

Gursimran S. Walia is an associate professor of

Computer Science at North Dakota State University. His
main research interests include empirical software
engineering, software engineering education, human
factors in software engineering, and software quality. He
is a member of the IEEE Computer Society. Contact him
at gursimran.walia@ndsu.edu

mailto:gursimran.walia@ndsu.edu
mailto:gursimran.walia@ndsu.edu

	Teaching Software Requirements Inspections to Software Engineering Students through Practical Training and Reflection
	Anurag Goswami, Gursimran Singh Walia
	Computer Science Department
	North Dakota State University
	References

