

2 COMPUTERS IN EDUCATION JOURNAL

BENCHMARKING SOFTWARE FOR SOLVING
MULTI-POLYNOMIAL SYSTEMS

Richard V. Schmidt and Mark J. DeBonis

Department of Mathematics
Manhattan College

Abstract

Benchmarking different software which

performs the same task gives students in
computer science and computer engineering an
opportunity to develop important skills. It also
demonstrates how effective benchmarking can
be applied to computer application packages
designed for solving systems of multi-
polynomial equations versus a new proposed
method by the second author

Introduction

 The second author has proposed a new way

to solve multi-polynomial equations all of the
same total degree in which the number of
equations equals the number of unknowns.
Below is a simple example of such a system
with three equations in three unknowns.

4x2 + 6xy + 6xz + 2y2 + 8yz + 3z2 = 1
2x2 + 3xy + 7xz - 3y2 - 3yz - 3z2 = 0
4x2 + 7xy + 2xz + y2 - 7yz - 2z2 = -4

 Such systems are found in many applied

mathematical and scientific fields. For instance,
in mathematical cryptology the method of
hidden field equations uses a multi-polynomial
system for encryption in which the solution is
the hidden message. Other applied examples can
be found in chemistry and robotics [1] to name a
few.

 A trial implementation of this new method

was programmed in C++ and then employing
the software package Singular [2], and was
shown to be feasible for small systems of
equations with at most seven unknowns. This
fact was made explicit by the use of a custom
made benchmarking program written in Python
by the first author to examine and compare both

the runtime and accuracy of the new algorithm
versus the computer algebraic systems Singular,
CoCoA [3] and Macaulay2 [4].

Method

Solving systems of nonlinear equations is a

well-known NP-complete problem, and no
polynomial-time algorithm is known for solving
any NP-complete problem. Some known
methods for solving multi-polynomial systems
employ Gröbner bases and resultants [5]. The
run time for the Gröbner basis algorithm is
exponential in 2d, or doubly exponential [6] [7],
where d is the number of unknowns. With
resultants, the dimension of the determinant
which needs to be computed in order to solve
the system grows at an alarming rate. For
instance, d multi-polynomial equations in d
variables each of degree n yields a determinant
of dimension 2d-1n2d-1-1 [8].

 The new algorithm proposed by the second

author is a generalization of a standard
technique for solving systems of linear
equations by multiplying by the inverse of the
coefficient matrix. A set of new unknowns is
introduced in the process and by solving for
these new parameters we are able to solve the
original multi-polynomial system. Due in part to
the fact that the algorithm employs only
solutions to linear systems and polynomial root
finding, this method is asymptotically more
efficient than existing methods.

 The new proposed algorithm solves square

homogeneous systems of any degree. It runs in
time exponential in dO(1), a significant
theoretical improvement. In addition, it only
requires solving linear systems and finding roots
of a polynomial;

COMPUTERS IN EDUCATION JOURNAL 3

 There are many parallels between methods for
solving linear systems and methods for solving
multi-polynomial systems. Some ideas for
solving multi-polynomial systems arose from
generalizing techniques employed to solve
linear systems. The use of Gröbner basis
extends the method of Gaussian Elimination.
The use of Resultants is a generalization of
Cramer's Rule. The question arises whether or
not one can extend the method of solving for the
unknowns by multiplying by the inverse of an
appropriate coefficient matrix. This new
algorithm presents a way to do this. Details of
this method will appear in a forthcoming paper.

The Benchmark Program

 As previously stated, the algorithm presented

in this paper was investigated using Big-O
runtime analysis and was determined to be
theoretically more efficient than the common
algorithms used today. We wanted to conduct an
empirical analysis to determine how well it
could solve concrete problems versus other
previously discussed methods.

 First we compared the algorithm up against

the best Computer Algebraic Systems. We
determined during early testing that Matlab,
Maxima and Maple took significantly longer
than the prototyped algorithm implementation.
Furthermore, they did not always return all
available solutions for the higher-degree
systems of which we were studying and in some
instances simply crashed, stating it could not
solve the system. Because of this, our analysis
focused on competing against Singular,
Macaulay2 and CoCoA, which all specialize in
solving multi-polynomial systems. These
applications are well recognized as the best
software around by computational algebraists.
Singular and CoCoA use an implementation of
Gröbner Bases (an exact method), while
Macaulay2 uses Polynomial Homotopy
Continuation Methods (a numerical method) to
solve multi-polynomial systems.

 We designed a benchmarking program in
Python (as well as some C++ sub-components)
in order to conduct large-scale tests on the
algorithm versus the previously mentioned
computer algebraic systems. The benchmarking
program uses a random number generator to
create systems of equations as sample problems
to solve. We utilize the same randomly
generated equations across all software
packages and performed tests to investigate
runtime and accuracy. One starts by inputting
the number of trials (T), and the degree of the
generated polynomial system (N) into the
benchmark program. The program randomly
generates a solution to the polynomial system
composed of N-components. We will refer to
this as a known solution, which we will use later
in one of our accuracy benchmarks. Next, the
benchmark program randomly generates a
system of square homogeneous multi-
polynomial equations of degree-N such that the
known solution satisfies the system. Figure I
presents a flowchart for the benchmarking
program.

 A high-quality random number generator is

needed in order to provide a good sampling of
multi-polynomial systems. Quality random
values are notoriously difficult to generate using
deterministic algorithms. Because of this, we
avoided using the C++ linear congruential
random generator. Instead, we implemented the
OpenSSL random bytes function, which
harvests entropy from a myriad of system and
hardware sources [9]. This random function is
designed for the purpose of cryptographic
applications, and thus will produce the best
quality values possible. Our implementation is
designed such that each random value is of
double-precision floating-point format with a
value between -5.0 and 5.0.

4 COMPUTERS IN EDUCATION JOURNAL

Figure I: Flowchart of
Benchmarking Algorithm.

 It is important to note that each computer
algebraic system has its own command structure
and format for data inputs. Therefore, we format
our created multi-polynomial system into the
standardized input method corresponding to
each software package. We designed the
benchmark application to generate the
appropriate scripts for each software package.
This fully automated the testing process.

 At this juncture, we are ready to assign the

sample problem to a computer algebraic system.
We begin by launching a new operating system
process using the benchmark application. Within
this process, a shell command call is made to
dispatch the computer algebraic system along
with its corresponding generated script to run.
This will start the given computer algebraic
system and immediately begin solving the
problem.

 Dispatching the computer algebraic system

from a new system process within Python
provides us with a multitude of benefits. First, it
allows us to measure the amount of time it takes
to solve a given problem, with a particular
computer algebraic system, in seconds with 6-
place decimal accuracy. We measure runtime by
making calls to the Linux operating system and
asking for the total CPU process time. In a
shared computing environment where other
applications and system tasks are running, tasks
must take turns using the CPU. If our task is not
running on the CPU, the timer is paused
immediately by the operating system and
resumed the moment our process takes control
of the processor again. Thus, we are measuring
how taxing the application is on the computer
processor, regardless of other applications or
system services running in the background. This
allows us to objectively isolate other interfering
processes and get a clean measurement of
runtime.

 Linux shells send and receive data using three

standard streams of characters, among which
include stdout (standard output stream), stderr
(standard error stream) and stdin (standard input
stream) [10].We are able to communicate

COMPUTERS IN EDUCATION JOURNAL 5

between programs using a half-duplex pipe, or a
one-way data channel, which redirects the
standard output stream from one process to the
standard input stream of another. To create a bi-
directional channel, we use two pipes. Using
these two pipes, we create a full-duplex (two-
way) inter-program communication channel,
where we can send inputs to the computer
algebraic system and receive output from within
our benchmark program.

 There are cases where a given input can crash

the computer algebraic system. When this
occurs, we take the returned information from
the process and we produce a log of that event
for further later study. This particular runtime is
not counted since the operation was not
complete. For the overwhelming majority of the
trials the software package completes the task.
When this is the case, we take the produced
solutions, log the runtime and conduct our
accuracy test.

 Our method of computing accuracy can be

seen by considering the following simple
accuracy rating example. Let A represent a
known solution and B represent the best-
matched solution produced by a given Computer
Algebraic System. For example, suppose A =
(1.0, 2.0, 3.0) and B = (0.9, 2.0, 3.1). Our
relative accuracy rating can be represented as
the magnitude squared of the difference of these
two vectors. In our example, it would be

||A – B||2 = || (0.1, 0.0, -0.1) ||2

= (0.1)2 + (0.0)2 + (-0.1)2 = 0.02

 In this particular example, solution B would
have the accuracy rating of 0.02. Note that a
perfect match will produce the result of zero.
Using this as a relative measurement, we are
able to determine how well each software
package is able to find the known solution of the
multi-polynomial system. The result of the
accuracy test is then logged. We repeat the
process for each computer algebraic system and
the implemented algorithm to complete a trial.
When the trial is complete, the benchmark

application will generate a new multi-
polynomial system and repeat the procedure
using each solver until T trials are complete.

Results

 Despite the fact that all of the other software

packages have had years of software
engineering development, we believe that the
new algorithm performs well matched against
them based upon our tests with regards to five
and six unknown variables.

 Table I shows the results using systems of

degree 6 over the course of 500 trials. We found
that the new algorithm was better than CoCoA
on both runtime and results. In our tests we
found that CoCoA only returned 2 out of the
available 64 solutions, while our algorithm
returned all 64. In addition, CoCoA's runtime
averaged more than three-times that of our
algorithm.

 With respect to accuracy, the new algorithm

was better than Macaulay2 on average by a
factor of ten. Note that the accuracy of our
algorithm is currently limited by the polynomial
root-finder. We believe the accuracy will be
much closer to exact once this process has been
refined. This may very well involve the use of
parallel processes which our algorithm is well-
suited to employ.

Table I: 500 Trials Solving Degree-6

Multi-Polynomial Systems.

Package Average

Runtime
Standard
Deviation

Average
Accuracy

Number
Solutions

Singular 16.43 s 0.80 s 0 64
Mac2 0.87 s 0.03 s 4.40 x 10-11 64

CoCoA 158.94 s 18.14 s 0 2
Ours 52.18 s 7.57 s 4.55 x 10-12 64

 Tables II & III summarize both runtime and

accuracy results for both five and six unknowns.
The reader should note the rapid increase in
runtime for five versus six unknowns. For
instance, for seven unknowns, Singular had a
runtime of roughly an hour and for eight

6 COMPUTERS IN EDUCATION JOURNAL

unknowns, Singular ran for two straight days
without ever stopping.

Table II: Average runtime ± standard deviation

of our solver versus the others, for d unknowns
with T trials.

d T Ours Singular Mac2 CoCoA
5 687 1.47±0.

19 s
0.33±0.
02 s

0.50±0
.03 s

0.91±0.06
s

6 500 52.18±7
.57 s

16.43±0
.80 s

0.87±0
.03 s

158.94±1
8.14 s

Table III: Average accuracy of our solver versus
the others, for d unknowns and T trials.

d T Ours Singular Macaulay2 CoCoA
5 687 9.36 x 10-11 0 3.61 x 10-11 0
6 500 4.55 x 10-12 0 4.40 x 10-11 0

Figure II and Figure III illustrate the results

breakdown of the algorithms data with regards
to 500 trials in six unknowns noted above.
Figure II shows the frequency distribution of the
run times of the algorithm. Notice that with the
exception of two-outlier cases, all systems were
solved in under 60 seconds. The mode
corresponds to the average value of about 50
seconds which is most desirable. Figure III
depicts the frequency distribution with regards
to accuracy. The bin-interval is logarithmic
based and corresponds to the exponent degree
when the accuracy is written in scientific
notation. Consider that nearly all of our trials
had at least an accuracy comparable to
Macaulay2's with a degree to -11. Most often,
however we exceeded this accuracy to produce
a mode degree of -12.

Conclusion

 The algorithm benchmarked in this paper

requires methods which run in polynomial time,
namely inverting square matrices, finding roots
of a polynomial and solving systems of linear
equations. This approach is similar to a method
called linearization [11] and is a standard
cryptological technique for solving multi-
polynomial systems (see [12] for a thorough
synopsis of the various forms of this algorithm).

Figure II: Histogram of the runtimes.

Figure III: Histogram of the log
base time accuracies.

The method presented in this paper is exact
except for the penultimate step in which we
obtain the values of the first parameter by
numerical approximation of the roots of a
polynomial. Another useful feature of this
algorithm is that it can be easily written to run in
parallel by finding the roots of a polynomial for
each unknown parameter. In the future, we hope
to capitalize on the fact that our algorithm is
well-suited to run in parallel in hopes of
improving both runtime and accuracy.

Appendix: The Manhattan College
Undergraduate Research Program

Manhattan College has a long tradition of

involving undergraduates in research and was
one of the original members of the Oberlin 50.

COMPUTERS IN EDUCATION JOURNAL 7

This is a group of undergraduate institutions
whose students have produced many PhDs in
engineering and science. At Manhattan College,
students can elect to take an independent study
course for three credits during the academic
year. In addition, the College provides grant
support to the students for ten weeks of work
during the summer. Previously published
articles in this journal by Manhattan College
student co-authors are a very effective
recruitment tool. The students have also
presented their results at a variety of
undergraduate research conferences including
the Hudson River Undergraduate Mathematics
Conference and the Spuyten Duyvil
Undergraduate Mathematics Conference.

Acknowledgements

We wish to thank Manhattan College for its

financial support while this research was being
conducted. Mark J. DeBonis was supported by a
Manhattan College faculty research summer
grant while Richard V. Schmidt was supported
by a Manhattan College student research
summer grant.

References

1. S.D. Fox & R.H. Lewis, “Algebraic
Detection of Flexibility of Polyhedral
structures with Applications to Robotics and
Chemistry”, Fordham Undergraduate
Research Journal, Vol. 2, Issue 1 (2014)

2. W. Decker, G.-M. Greurel, G. Pfister and H.

Schönemann, “Singular 4-0-2 – A computer
algebra system for polynomial
computations”, http://www.singular.uni-
kl.de (2015).

3. J. Abbott, A. Bigatti, and G. Lagorio,

"CoCoA-5: A System for Doing
Computations in Commutative Algebra,"
http://cocoa.dima.unige.it (2014)

4. D.R. Grayson and M.E. Stillman,

“Macaulay2, a software system for research
in algebraic geometry”, http://www.math
.uiuc.edu/Macaulay2 (2015)

5. Cox, D., Little, J. and O'Shea, D. Using
Algebraic Geometry. (Springer-Verlag.
1998).

6. J.C. Faugère, “A new efficient algorithm for

computing Gröbner bases (F4)”, J. of Pure
and Applied Algebra, 139 (1999).

7. A. Ayad, “A Survey on the Complexity of

Solving Algebraic System”, International
Math. Forum, 5 (7), (2010).

8. V. Dolotin and A. Morozov, Introduction to

Non-linear Algebra, (World Scientific
Publishing, 2007).

9. OpenSSL Documentation Editors, “Random

Numbers in OpenSSL”, http://wiki.openssl.
org/index.php/Random Numbers.

10. I. Shields, “Learn Linux 101: Streams,

pipes, and redirects”, http://www.ibm.com/
developerworks/library/l-lpic1-v3-103-4/l-
lpic1-v3-103-4-pdf.pdf, (2009).

11. A. Kipnis and A. Shamir, “Cryptanalysis of

the HFE Public Key Cryptosystem by
Relinearization” in H. Imai and Y. Zheng,
editors, Advances in Cryptology (Crypto
’99, volume 1267 of LNCS, Springer-
Verlag, 1999).

12. S. Murphy and M.B. Paterson, “A

Geometric View of Cryptographic Equation
Solving”, J. of Mathematical Cryptology,
Vol. 2.

Biographical Information

Richard V. Schmidt is currently a student in

the electrical and computer engineering program
at Manhattan College

Mark J. DeBonis is an Assistant Professor in

the Department of Mathematics at Manhattan
College. He received his Ph.D. from University
of California, Irvine. His research interests
include computational algebraic geometry,
machine learning and applied statistics.

http://www.math/
http://wiki.openssl/
http://www.ibm.com/

