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Abstract 

 
Benchmarking different software which 

performs the same task gives students in 
computer science and computer engineering an 
opportunity to develop important skills. It also 
demonstrates how effective benchmarking can 
be applied to computer application packages 
designed for solving systems of multi-
polynomial equations versus a new proposed 
method by the second author 

 
Introduction 

 
  The second author has proposed a new way 

to solve multi-polynomial equations all of the 
same total degree in which the number of 
equations equals the number of unknowns. 
Below is a simple example of such a system 
with three equations in three unknowns. 

 
4x2 + 6xy + 6xz + 2y2 + 8yz + 3z2 = 1 
2x2 + 3xy + 7xz - 3y2 - 3yz - 3z2 = 0 
4x2 + 7xy + 2xz + y2 - 7yz - 2z2 = -4 
 
 Such systems are found in many applied 

mathematical and scientific fields. For instance, 
in mathematical cryptology the method of 
hidden field equations uses a multi-polynomial 
system for encryption in which the solution is 
the hidden message. Other applied examples can 
be found in chemistry and robotics [1] to name a 
few. 

 
  A trial implementation of this new method 

was programmed in C++ and then employing 
the software package Singular [2], and was 
shown to be feasible for small systems of 
equations with at most seven unknowns. This 
fact was made explicit by the use of a custom 
made benchmarking program written in Python 
by the first author to examine and compare both 

the runtime and accuracy of the new algorithm 
versus the computer algebraic systems Singular, 
CoCoA [3] and Macaulay2 [4]. 

 
Method 

 
Solving systems of nonlinear equations is a 

well-known NP-complete problem, and no 
polynomial-time algorithm is known for solving 
any NP-complete problem. Some known 
methods for solving multi-polynomial systems 
employ Gröbner bases and resultants [5]. The 
run time for the Gröbner basis algorithm is 
exponential in 2d, or doubly exponential [6] [7], 
where d is the number of unknowns. With 
resultants, the dimension of the determinant 
which needs to be computed in order to solve 
the system grows at an alarming rate. For 
instance, d multi-polynomial equations in d 
variables each of degree n yields a determinant 
of dimension 2d-1n2d-1-1 [8]. 

 
 The new algorithm proposed by the second 

author is a generalization of a standard 
technique for solving systems of linear 
equations by multiplying by the inverse of the 
coefficient matrix. A set of new unknowns is 
introduced in the process and by solving for 
these new parameters we are able to solve the 
original multi-polynomial system. Due in part to 
the fact that the algorithm employs only 
solutions to linear systems and polynomial root 
finding, this method is asymptotically more 
efficient than existing methods. 

 
 The new proposed algorithm solves square 

homogeneous systems of any degree. It runs in 
time exponential in dO(1), a significant 
theoretical improvement. In addition, it only 
requires solving linear systems and finding roots 
of a polynomial; 
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 There are many parallels between methods for 
solving linear systems and methods for solving 
multi-polynomial systems. Some ideas for 
solving multi-polynomial systems arose from 
generalizing techniques employed to solve 
linear systems. The use of Gröbner basis 
extends the method of Gaussian Elimination. 
The use of Resultants is a generalization of 
Cramer's Rule. The question arises whether or 
not one can extend the method of solving for the 
unknowns by multiplying by the inverse of an 
appropriate coefficient matrix. This new 
algorithm presents a way to do this. Details of 
this method will appear in a forthcoming paper. 

 
The  Benchmark  Program 

 
 As previously stated, the algorithm presented 

in this paper was investigated using Big-O 
runtime analysis and was determined to be 
theoretically more efficient than the common 
algorithms used today. We wanted to conduct an 
empirical analysis to determine how well it 
could solve concrete problems versus other 
previously discussed methods. 

 
 First we compared the algorithm up against 

the best Computer Algebraic Systems. We 
determined during early testing that Matlab, 
Maxima and Maple took significantly longer 
than the prototyped algorithm implementation. 
Furthermore, they did not always return all 
available solutions for the higher-degree 
systems of which we were studying and in some 
instances simply crashed, stating it could not 
solve the system. Because of this, our analysis 
focused on competing against Singular, 
Macaulay2 and CoCoA, which all specialize in 
solving multi-polynomial systems. These 
applications are well recognized as the best 
software around by computational algebraists.  
Singular and CoCoA use an implementation of 
Gröbner Bases (an exact method), while 
Macaulay2 uses Polynomial Homotopy 
Continuation Methods (a numerical method) to 
solve multi-polynomial systems. 

 
 

 We designed a benchmarking program in 
Python (as well as some C++ sub-components) 
in order to conduct large-scale tests on the 
algorithm versus the previously mentioned 
computer algebraic systems. The benchmarking 
program uses a random number generator to 
create systems of equations as sample problems 
to solve. We utilize the same randomly 
generated equations across all software 
packages and performed tests to investigate 
runtime and accuracy.  One starts by inputting 
the number of trials (T), and the degree of the 
generated polynomial system (N) into the 
benchmark program. The program randomly 
generates a solution to the polynomial system 
composed of N-components. We will refer to 
this as a known solution, which we will use later 
in one of our accuracy benchmarks. Next, the 
benchmark program randomly generates a 
system of square homogeneous multi-
polynomial equations of degree-N such that the 
known solution satisfies the system. Figure I 
presents a flowchart for the benchmarking 
program. 

 
  A high-quality random number generator is 

needed in order to provide a good sampling of 
multi-polynomial systems. Quality random 
values are notoriously difficult to generate using 
deterministic algorithms. Because of this, we 
avoided using the C++ linear congruential 
random generator. Instead, we implemented the 
OpenSSL random bytes function, which 
harvests entropy from a myriad of system and 
hardware sources [9]. This random function is 
designed for the purpose of cryptographic 
applications, and thus will produce the best 
quality values possible. Our implementation is 
designed such that each random value is of 
double-precision floating-point format with a 
value between -5.0 and 5.0. 
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Figure I: Flowchart of 
Benchmarking Algorithm. 

 
 

 It is important to note that each computer 
algebraic system has its own command structure 
and format for data inputs. Therefore, we format 
our created multi-polynomial system into the 
standardized input method corresponding to 
each software package. We designed the 
benchmark application to generate the 
appropriate scripts for each software package. 
This fully automated the testing process. 

 
 At this juncture, we are ready to assign the 

sample problem to a computer algebraic system. 
We begin by launching a new operating system 
process using the benchmark application. Within 
this process, a shell command call is made to 
dispatch the computer algebraic system along 
with its corresponding generated script to run. 
This will start the given computer algebraic 
system and immediately begin solving the 
problem. 

 
 Dispatching the computer algebraic system 

from a new system process within Python 
provides us with a multitude of benefits. First, it 
allows us to measure the amount of time it takes 
to solve a given problem, with a particular 
computer algebraic system, in seconds with 6-
place decimal accuracy. We measure runtime by 
making calls to the Linux operating system and 
asking for the total CPU process time. In a 
shared computing environment where other 
applications and system tasks are running, tasks 
must take turns using the CPU. If our task is not 
running on the CPU, the timer is paused 
immediately by the operating system and 
resumed the moment our process takes control 
of the processor again. Thus, we are measuring 
how taxing the application is on the computer 
processor, regardless of other applications or 
system services running in the background. This 
allows us to objectively isolate other interfering 
processes and get a clean measurement of 
runtime. 

 
 Linux shells send and receive data using three 

standard streams of characters, among which 
include stdout (standard output stream), stderr 
(standard error stream) and stdin (standard input 
stream) [10].We are able to communicate 
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between programs using a half-duplex pipe, or a 
one-way data channel, which redirects the 
standard output stream from one process to the 
standard input stream of another. To create a bi-
directional channel, we use two pipes. Using 
these two pipes, we create a full-duplex (two-
way) inter-program communication channel, 
where we can send inputs to the computer 
algebraic system and receive output from within 
our benchmark program. 

 
 There are cases where a given input can crash 

the computer algebraic system. When this 
occurs, we take the returned information from 
the process and we produce a log of that event 
for further later study. This particular runtime is 
not counted since the operation was not 
complete. For the overwhelming majority of the 
trials the software package completes the task. 
When this is the case, we take the produced 
solutions, log the runtime and conduct our 
accuracy test. 

 
  Our method of computing accuracy can be 

seen by considering the following simple 
accuracy rating example. Let A represent a 
known solution and B represent the best-
matched solution produced by a given Computer 
Algebraic System. For example, suppose A = 
(1.0, 2.0, 3.0) and B = (0.9, 2.0, 3.1). Our 
relative accuracy rating can be represented as 
the magnitude squared of the difference of these 
two vectors. In our example, it would be 

 
||A – B||2 = || (0.1, 0.0, -0.1) ||2 

 
= (0.1)2 + (0.0)2 + (-0.1)2 = 0.02 

 
  In this particular example, solution B would 
have the accuracy rating of 0.02. Note that a 
perfect match will produce the result of zero. 
Using this as a relative measurement, we are 
able to determine how well each software 
package is able to find the known solution of the 
multi-polynomial system. The result of the 
accuracy test is then logged. We repeat the 
process for each computer algebraic system and 
the implemented algorithm to complete a trial. 
When the trial is complete, the benchmark 

application will generate a new multi-
polynomial system and repeat the procedure 
using each solver until T trials are complete. 

 
Results 

 
 Despite the fact that all of the other software 

packages have had years of software 
engineering development, we believe that the 
new algorithm performs well matched against 
them based upon our tests with regards to five 
and six unknown variables. 

 
 Table I shows the results using systems of 

degree 6 over the course of 500 trials. We found 
that the new algorithm was better than CoCoA 
on both runtime and results. In our tests we 
found that CoCoA only returned 2 out of the 
available 64 solutions, while our algorithm 
returned all 64. In addition, CoCoA's runtime 
averaged more than three-times that of our 
algorithm. 

 
 With respect to accuracy, the new algorithm 

was better than Macaulay2 on average by a 
factor of ten. Note that the accuracy of our 
algorithm is currently limited by the polynomial 
root-finder. We believe the accuracy will be 
much closer to exact once this process has been 
refined. This may very well involve the use of 
parallel processes which our algorithm is well-
suited to employ. 

 
Table I: 500 Trials Solving Degree-6  

Multi-Polynomial Systems. 
 
Package Average 

Runtime 
Standard 
Deviation 

Average 
Accuracy 

Number 
Solutions 

Singular 16.43 s 0.80 s 0 64 
Mac2 0.87 s 0.03 s 4.40 x 10-11 64 

CoCoA 158.94 s 18.14 s 0 2 
Ours 52.18 s 7.57 s 4.55 x 10-12 64 
 
 
 Tables II & III summarize both runtime and 

accuracy results for both five and six unknowns. 
The reader should note the rapid increase in 
runtime for five versus six unknowns. For 
instance, for seven unknowns, Singular had a 
runtime of roughly an hour and for eight 
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unknowns, Singular ran for two straight days 
without ever stopping. 

 
Table II: Average runtime ± standard deviation 

of our solver versus the others, for d unknowns 
with T trials. 

 
d T Ours Singular Mac2 CoCoA 
5 687 1.47±0.

19 s 
0.33±0.
02 s 

0.50±0
.03 s 

0.91±0.06 
s 

6 500 52.18±7
.57 s 

16.43±0
.80 s 

0.87±0
.03 s 

158.94±1
8.14 s 

 
 
Table III: Average accuracy of our solver versus 
the others, for d unknowns and T trials. 
 
d T Ours Singular Macaulay2 CoCoA 
5 687 9.36 x 10-11 0 3.61 x 10-11 0 
6 500 4.55 x 10-12 0 4.40 x 10-11 0 

 
Figure II and Figure III illustrate the results 

breakdown of the algorithms data with regards 
to 500 trials in six unknowns noted above. 
Figure II shows the frequency distribution of the 
run times of the algorithm. Notice that with the 
exception of two-outlier cases, all systems were 
solved in under 60 seconds. The mode 
corresponds to the average value of about 50 
seconds which is most desirable. Figure III 
depicts the frequency distribution with regards 
to accuracy. The bin-interval is logarithmic 
based and corresponds to the exponent degree 
when the accuracy is written in scientific 
notation. Consider that nearly all of our trials 
had at least an accuracy comparable to 
Macaulay2's with a degree to -11. Most often, 
however we exceeded this accuracy to produce 
a mode degree of -12. 

 
Conclusion 

 
    The algorithm benchmarked in this paper 

requires methods which run in polynomial time, 
namely inverting square matrices, finding roots 
of a polynomial and solving systems of linear 
equations. This approach is similar to a method 
called linearization [11] and is a standard 
cryptological technique for solving multi-
polynomial systems (see [12] for a thorough 
synopsis of the various forms of this algorithm).  

 
 

Figure II: Histogram of the runtimes. 
 

 
 

Figure III: Histogram of the log  
base time accuracies. 

 
The method presented in this paper is exact 
except for the penultimate step in which we 
obtain the values of the first parameter by 
numerical approximation of the roots of a 
polynomial. Another useful feature of this 
algorithm is that it can be easily written to run in 
parallel by finding the roots of a polynomial for 
each unknown parameter. In the future, we hope 
to capitalize on the fact that our algorithm is 
well-suited to run in parallel in hopes of 
improving both runtime and accuracy. 

 
Appendix:  The  Manhattan  College 
Undergraduate  Research  Program 

     
Manhattan College has a long tradition of 

involving undergraduates in research and was 
one of the original members of the Oberlin 50. 



 

COMPUTERS IN EDUCATION JOURNAL 7 

This is a group of undergraduate institutions 
whose students have produced many PhDs in 
engineering and science.  At Manhattan College, 
students can elect to take an independent study 
course for three credits during the academic 
year.  In addition, the College provides grant 
support to the students for ten weeks of work 
during the summer. Previously published 
articles in this journal by Manhattan College 
student co-authors are a very effective 
recruitment tool.  The students have also 
presented their results at a variety of 
undergraduate research conferences including 
the Hudson River Undergraduate Mathematics 
Conference and the Spuyten Duyvil 
Undergraduate Mathematics Conference. 
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