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Abstract 

 
   Computer modeling is an important skill for 

engineering and science students to acquire. 
Monte Carlo simulations of three dimensional 
fluids provide an opportunity for students to 
develop their computer skills while deepening 
their knowledge of the behavior of 
materials. Using the Maple software package, 
students can easily create animations of particle 
movements. 

 
Introduction 

 
   In previous publications in this journal, 

Lasky and Bishop [1] and Balady and Bishop 
[2] used Monte Carlo methods to simulate 
homogeneous, two dimensional hard disk fluids. 
Balady and Bishop [2] computed the equation of 
state from the pair correlation function [3].  
Merriman and Bishop [4] and Havlicek and 
Bishop [5] investigated binary mixtures of disks 
for a variety of disk diameter ratios and 
compositions. In this work we examine 
homogenous fluids in three dimensions. Our 
results are compared to other simulations and 
theory. 

 
  A hard sphere system contains N particles, 

each with a diameter of σ, in a box with sides 
Lx , Ly and Lz. The number density, ρ, is given 
by 
 
                     ρ  = N / (Lx Ly Lz)                 (1) 
 

 In all the simulations, Lx = Ly = Lz. The 
systems are started in either a face-centered 
cubic lattice, fcc, or a cubic lattice [6].  A fcc 
lattice has 4 particles per unit cell so N = 4n3 
whereas a cubic lattice has 1 particle per unit 

cell and N = n3. Here n is an integer. Figures 1A 
and 1B show the starting lattices when n = 2 
(fcc) and n = 3 (cubic), respectively, when  
ρ = 0.40. 

 
The equation of state [7] is given by the 

compressibility factor, Z = P/ρkBT, where P is 
the pressure, kB is Boltzmann's constant and T is 
the absolute temperature. In an ideal gas the 
particles do not interact and then Z = 1. In the 
case of the homogeneous hard sphere fluid, Z is 
related [7] to the pair correlation function at 
contact by 

 
                 Z = 1 + ρ (2π /3) σ3G(σ)              (2) 
  
 Here, σ is the contact diameter, the separation 

between the centers of the particles when 
touching. The pair correlation function at 
contact is G(σ).  A pair correlation function [3], 
G(R), measures the relative distribution of 
particles at a distance |R| from the center of a 
reference particle. 

 
Method 

 
  The details of our MC computer simulation 

are contained in the papers of Lasky and Bishop 
[1] and Merriman and Bishop [2]. The particles 
are started at positions in a lattice and then 
moved by the standard Metropolis Monte Carlo 
method [8-12] until a random, equilibrated state 
is achieved.  A move is rejected whenever a 
particle overlaps another particle; e.g. the 
separation between their centers becomes less 
than σ. If the new position is not accepted, the 
test particle remains at its current location and 
the next particle is selected for a test move. 
Once all N particles have been tested a single 
pass (or MC step) is complete.  
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      Figure 1A:   FCC Lattice.    Figure 1B:    Cubic Lattice. 

 
  The Maple software package allows one to 

easily create graphics snapshots indicating how 
the particles change their configuration. At the 
starting lattice stage and after every fixed 
interval of passes (a number specified by the 
user) a snapshot can be generated and written to 
a file. Using Farley and Tiffany’s four step 
method [13], each snapshot can then be used to 
make an animation.  

 
     Results 

 
   The simulation has been developed by using 

the gnu C compiler on a PC with the Linux 
operating system. Production runs were 
generated for 12,000,000 MC steps and 
2,000,000 steps were discarded. The sampling 
interval was set at 2,000 steps so that there were 
5,000 equilibrated samples to average over.  

 
The pair correlation function is computed by 

averaging over both the appropriate number of 
particles and the number of equilibrated 
samples. The details of the pair correlation 
function calculations are contained in the earlier 
paper by Lasky and Bishop [1]. Figure 2 
presents G(R) for ρ = 0.22, 0.49 and 0.70  

 
starting from a cubic lattice when N = 343.  The 
pair correlation function for the  lowest density, 
0.22, displays no long range order but as the 
density is increased, a secondary peak develops 
which indicates the presence of long range 
order. 

 
The equation of state has been obtained by 

finding the value of the pair correlation function 
at contact. This is determined by fitting a line to 
the first peak of the pair correlation functions 
and then extrapolating to the appropriate contact 
value, as illustrated in Havlicek and Bishop [5].  
Once the contact value has been determined, the 
equation of state is found from Eq. 2. The Z 
values for all the systems studied are contained 
in the Table. Zcs are the theoretical values 
predicted by the Carnahan and Starling equation 
of state [14]: 

 
           Zsp = (1 + η + η2 – η3) / (1 - η)3          (3) 

 
Here η is the packing fraction, which in three 

dimensions is related to the number density by 
 

                           η  =  ρ (π/6) σ3                      (4) 
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Figure 2: The pair correlation function for different densities:  

ρ = 0.22 dashed line, ρ = 0.49 dotted line, and ρ = 0.70 solid line. 
 

Table: Equation of State Data. 
 

ρ η Zcs Zws Zblw Zmc64 Zmc343 Zmc108 
0.00 0.000 1.000      
0.04 0.021 1.088 1.089     
0.10 0.052 1.240 1.241 1.240    
0.13 0.068 1.325 1.329     
0.18 0.094 1.483     1.484 
0.22 0.115 1.627 1.633  1.630 1.629  
0.25 0.131 1.745 1.753 1.750    
0.30 0.157 1.967  1.968 1.974   
0.37 0.194 2.335 2.343     
0.40 0.209 2.518 2.526 2.522   2.529 
0.43 0.225 2.718 2.725     
0.45 0.236 2.862  2.867 2.884   
0.49 0.257 3.177 3.181  3.197 3.184  
0.51 0.267 3.350   3.381   
0.52 0.272 3.441 3.442     
0.57 0.298 3.942     3.954 
0.60 0.314 4.283 4.295 4.295    
0.62 0.325 4.531   4.573   
0.65 0.340 4.936 4.949 4.950    
0.70 0.367 5.710 5.729 5.727 5.774 5.714  
0.72 0.377 6.061   6.112   
0.75 0.393 6.636 6.657 6.655    
0.80 0.419 7.750 7.766 7.770    
0.82 0.429 8.258     8.240 
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  Also listed in the Table are Zws which are 
the values found by Wu and Sadus [15] for N = 
500 or 1372 starting from an fcc lattice  using 
Monte Carlo methods and Zblw which are the 
values determined by Bannerman, Lue and 
Woodcock [16] for N = 1098500 or 108000 
starting from either an fcc or a cubic lattice 
using molecular dynamics, MD, methods. 
Zmc64 and Zmc343 are the new MC results 
when N=64 and N=343 starting from a cubic 
lattice   and   Zmc108  are   the   MC  results  for  

N=108 starting from a fcc lattice (see Figures 
1A and 1B). In all cases the data are consistent 
with each other within 1%. Our new data are in 
agreement with the theoretical predictions for 
the equation of state. Figure 3 presents the 
equation of state, Z, as a function of density. All 
the data are in excellent agreement with the 
Carnahan Starling theoretical equation. The 
Table indicates that there is no significant 
difference between the cubic and fcc lattice MC 
results for the range of densities examined. 
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 Figure 3:  The equation of state, Z, as a function of the density. The solid line is the Carnahan and 
Starling theoretical equation (Eq. 3). The squares are the Wu and Sadus [15] MC data and the diamonds 
are the Bannerman, Lue and Woodcock [16] MD data. The up triangles and circles  are the current MC 
data for N=64 and N=343 cubic lattice systems, respectively, and the down triangles are current MC 
data for N = 108 fcc lattice systems. 
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Conclusion 
 

We have investigated three dimensional 
homogenous hard sphere systems by Monte 
Carlo simulations. The equation of state has 
been computed from the contact pair correlation 
function. The results are in excellent agreement 
with other simulations and theories. There is no 
significant difference between initializing the 
simulation from the cubic or fcc lattice. 
Animations can be used to indicate the nature of 
the equilibration. Modeling projects such as the 
one described here provide a clear 
demonstration of some aspects of the behavior 
of materials and thus strongly enhance student 
understanding and intuition. 
 

Appendix:  The Manhattan  College 
Undergraduate  Research  Program 

 
Manhattan College has a long tradition of 

involving undergraduates in research and was 
one of the original members of the Oberlin 50. 
This is a group of undergraduate institutions 
whose students have produced many PhDs in 
engineering and science.  At Manhattan College, 
students can elect to take an independent study 
course for three credits during the academic 
year.  In addition, the College provides grant 
support to the students for ten weeks of work 
during the summer. I have personally recruited 
the students from my junior level course in 
Systems Programming. Previously published 
articles in this journal by Manhattan College 
student co-authors are a very effective 
recruitment tool.  The students have also 
presented their results at a variety of 
undergraduate research conferences including 
the Hudson River Undergraduate Mathematics 
Conference and the Spuyten Duyvil 
Undergraduate Mathematics Conference. 
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