

100 COMPUTERS IN EDUCATION JOURNAL

EXPLORING UNDERGRADUATE STUDENTS’ COMPUTATIONAL
LITERACY IN THE CONTEXT OF PROBLEM SOLVING

Camilo Vieira, Alejandra J. Magana

Department of Computer and Information Technology
Purdue University

Anindya Roy, Michael L. Falk, and Michael J. Reese Jr.

Department of Materials Science and Engineering
 Johns Hopkins University

Abstract

This paper evaluates undergraduate students’
performance during a problem-based
computational science course in a materials
science and engineering program. The course
guides students to apply computational tools and
methods to solve problems in materials science
and engineering. The study assesses the
relationship between phases of the problem-
solving process and computational literacy skills
in the context of MATLAB® computational
challenges. Students complete five projects that
require combined problem-solving skills and
computational skills. Results suggest that
aligning computational challenges with problem
solving phases can support student learning and
computational literacy skills development. The
findings also suggest that different
computational challenges require different
forms of support for the learners to successfully
complete the problem solving process.

Introduction

Computational Science and Engineering (CSE)
has emerged as an important tool to solve
complex engineering problems [1]. Engineers
need an ability to use computational tools,
integrated with strong problem-solving skills, to
tackle complex problems [2-4]. For example, in
Materials Science and Engineering, a sub
discipline called Computational Materials
Science [5] has been established. This trend is
reflected in educational settings too --- there has
been a call to integrate computational tools and
methods into different disciplinary engineering
curricula sooner and often [6]. Aligned with this
idea, the department of Materials Science and

Engineering at Johns Hopkins University started
a novel computational course for its
undergraduate students, titled Computer
Programming for Materials Science and
Engineers (CPMSE).

In this study, we investigate how students in
the CPMSE course applied computational tools
and methods to solve materials science and
engineering problems. We seek to answer the
following questions in connection to CPMSE:

What are students’ performances on
disciplinary computational challenges when
configured as problem solving phases?

How does students’ performance on specific
phases of the problem-solving process on
different projects relate to the other phases, and
to student overall performance?

How do students’ problem-solving approaches
relate to their computational literacy skills?

Literature Review

Many current engineering curricula are
designed to introduce computation in an isolated
way from the disciplinary core courses. Students
enrolled in such programs acquire the
disciplinary knowledge and the computational
knowledge separately. It is not clear whether
they would know how to apply these together
[6]. Educators proposed several approaches to
better integrate the two [1]. Some of these
include creating individual courses as part of
computational concentrations, creating
interdisciplinary collaborative project courses,
using small add-on courses to supplement

COMPUTERS IN EDUCATION JOURNAL 101

existing math or science courses, and
introducing computational concepts through
tools such as computer graphics.

These curricular practices rely on different
pedagogical strategies. Some of the most
effective techniques in the context of
programming and CSE courses include the
inverted classroom approach [7, 8, 9], pair
programming [10], worked-out examples for
introducing complex learning contexts to novice
learners [11], project-based and problem-based
learning in collaborative settings [7], and so on.
Research studies investigating these pedagogical
strategies sought to measure student
performance or student perceptions. However, it
is not clear how these pedagogies work, and the
relevant aspects that support the development of
student computational skills in the context of
disciplinary problems.

This study will explore the relationship of the
use of computational tools and methods as part
of specific steps in the problem-solving process.
We will also investigate how this practice
relates to student achievement of the learning
outcomes.

Theoretical Framework

In this study we explore the importance of
computational literacy that enables the students
to solve materials science problems. The
theoretical frameworks underpinning this study
are computational literacy [12] and problem
solving [2]. Computational literacy refers to an
understanding that goes beyond just using a
computer and its components. The problem-
solving process requires the conceptual and the
procedural knowledge along with the problem
states [2] to be intimately connected. These
connections are made by creating different
representations of the problem --- verbal,
mathematical, computational and visual
representations of a phenomenon in the present
context. A mastery of computational literacy
would enable students to create and manipulate
computational representations to learn scientific
phenomena [12]. Students’ strategic knowledge
[13] dictates their choice and understanding of

representations, and the quality of these
representations will, in turn, determine their
ability to solve a problem. Students build or use
these representations while they are solving a
disciplinary problem using computational tools.

In this study we understand the problem-
solving process using the Integrated Problem-
Solving (IPS) [2] model, and adapt this model to
include the concept of computational literacy.
The first of three phases is the problem
recognition. Here, the student will understand
the problem and create a plan to solve it. The
student will use verbal and mathematical
representations for that purpose. On a second
phase called problem framing, the students
execute the plan creating computational
representations of the phenomenon (i.e., the
implementation of the model). Finally, on the
problem synthesis phase, the students will
complete the plan by evaluating the solution.
They will use computational, visual,
mathematical, and verbal representations to
ensure the solution is correct. The Methods
section contains a detailed description of how
we implement IPS. We argue in this work that
computational literacy can be acquired more
effectively when we introduce computational
tools and methods in the context of solving
disciplinary engineering challenges.

Methods

The Course

The CPMSE course was designed using the
How People Learn framework [14]. It is
knowledge centered, learner centered, and
community centered. It uses MATLAB as the
programming environment and the learning
objectives are [7]:

(1) Write MATLAB programs to execute
well-defined algorithms.

(2) Design algorithms to solve engineering
problems by breaking these into small
tractable parts.

(3) Model physical and biological systems
by applying linear systems and ordinary
and partial differential equations.

102 COMPUTERS IN EDUCATION JOURNAL

In this course we employed an inverted
classroom approach where students are required
to watch recorded lectures before coming to
class. During the class time they focused on
practice exercises. The students were required to
complete five computational projects related to
their core courses, which counted for about
52.5% of the final grade in CPMSE. The
disciplinary and computational learning
outcomes for each of the projects are described

in Table 1. A brief description of the
assignments is included as Appendix A.

Project evaluations were organized based on
IPS [2] --- which divides the problem-solving
process into three distinct phases, as described
in the previous section.

Other activities that contributed to the final
student course score included: (1) 17 quizzes,
(2) two exams, and (3) a final project.

Table 1: Computational and disciplinary learning outcomes per project.

 Computational Learning
Outcomes

Disciplinary Learning
Outcomes

Project 1 The student demonstrates the ability to apply the
techniques of modeling and simulation to a range of
problem areas.
The student uses MATLAB to create visual displays
of data, including graphs, charts, tables, and
histograms.

The student graphically represents and
calculates the phases present in a binary
phase diagram.

Project 2 The student implements algorithms for solving
differential equations.
The student models biological systems by applying
linear systems and ordinary and partial differential
equations

The student models the progress of HIV
infection in a patient that is being treated
with a drug of a given effectiveness.

Project 3 The student demonstrates the ability to apply the
techniques of modeling and simulation to a range of
problem areas.
The student uses MATLAB to create visual displays
of data, including graphs, charts, tables, and
histograms.

The student models crystal structures
cleaved along a plane and generates a
three-dimensional representation of them.

Project 4 The student models biological systems by applying
linear systems and ordinary and partial differential
equations.
The student demonstrates the ability to apply the
techniques of modeling and simulation to a range of
problem areas.

The student simulates the cardiac tissue
and the ventricular fibrillation process.

Project 5 The student demonstrates the ability to apply the
techniques of modeling and simulation to a range of
problem areas.

The student creates and interprets a
molecular dynamics simulation in terms of
kinetic energies.

Participants

Twenty-three freshmen and sophomore
material science and engineering students
completed the CPMSE course in spring 2014,

and participated in the study. The five
computational projects the students solved were
analyzed on a rubric (Table 2) designed to
explore the relationships of computational
literacy with the three phases of IPS [12].

COMPUTERS IN EDUCATION JOURNAL 103

Data Collection and Data Analysis

According to IPS, the three phases of problem
solving are: (1) problem recognition; (2)
problem framing; and (3) problem synthesis.
Note that the IPS framework [2] is originally
presented for solving physics problems using
free-body diagrams and mathematical equations.
In that context, solving the mathematical
equations would determine the completion of
the process. Projects in CPMSE are more
involved in comparison, and the use of
mathematical representations is part of the
problem recognition; in fact, most of the
projects provided the mathematical
representation as part of the problem statement.

The problem framing phase comprises the
implementation of the code. It is important to
highlight that these projects are not simple
programming projects. Hence, the problem is
not solved once the program is built. In addition
to writing codes, the students need to be able to
run their codes and check the output against test
cases --- to evaluate how appropriate their
programs are to answer questions based on
disciplinary problems. This last requirement ---
their ability to demonstrate disciplinary
understanding --- forms the problem synthesis
step.

A priori, we expect computational literacy to
overlap with all of the three phases of problem
solving as defined here. We hypothesize that a
correlation of computational literacy to different
phases will be found. In order to explore the
interdependence, we designed a rubric with two
distinct components: (1) problem solving
phases; and (2) computational literacy (see
Table 2). The five student projects were
evaluated using this rubric. The student projects
were graded on the rubric criteria on a scale of
0-10, and then each criterion was converted to a
score of 100. We present the resulting

descriptive statistics in Table 3. We then
calculated Pearson correlation between each two
criteria of the rubric, along with the project
scores and the final course grades, for all five
projects separately. We interpret a weak Pearson
correlation coefficient to be 0.1 or lower; a
moderate correlation to be between 0.25 and
0.45; and, a strong correlation coefficient is
taken to be 0.5 or higher [15].

Results

Table 3 depicts average scores for all projects
grouped by the four different criteria. A positive
performance for each criterion was set as 70%
or above. Students obtained the highest scores
for projects two and four, and the lowest score
was recorded for Project 1. The students
obtained high scores in the implementation
phase for all the projects except project one. The
problem synthesis phase of project 1 was found
to be low-scoring as well. This result suggests
that students may have taken some time to
acquire these skills, but later on, they were able
to use their skillsets in different disciplinary
contexts. An alternative explanation is that, after
the first project, students better understood what
was expected of them. Results also suggest that
students had difficulties in the recognition of the
last two problems.

Note that some of the scores do not have a
standard deviation, and therefore it was not
possible to identify a correlation for those items
in the individual projects. Hence, these cells are
marked with ‘N/A’ in the correlation tables.

In the correlational analysis of individual
projects (Appendix B), there are similar patterns
of correlations for projects 1, 3, and 5, while
project 2 and 4 behave more like each other.
The main difference between these two groups
of projects is the strong correlation found
between problem framing and problem
synthesis for the first group of projects (r > 0.6).

104 COMPUTERS IN EDUCATION JOURNAL

Table 2: Rubric for Project and Application CPMSE –
All scoring descriptions are not shared due to space limitations.

Criterion Description Poor (0-2) … Excellent (9-10)

Problem
Recognition

(10%)

Evaluates the student’s plan for
completing the project.
Student instructions:
Summarize the nature of the
algorithm briefly, identifying the
most relevant information from
the project description.
Articulate a well thought-out
strategy for designing, coding,
testing and debugging your work.

- No strategy is
articulated for the
design, coding,
testing or
debugging. …

- All four areas (designing,
coding, testing, debugging) are
addressed clearly in the context of
the project.
- The summary references the
project description and identifies
relevant aspects of the project.
- The strategy is articulated
clearly and is logical and well
thought-out.

Problem
Framing /

Implementation
(40%)

Coding style (10%)
Measures the extent to which the
code is presented in a manner that
is clearly readable by others.
Is the code indented, commented
and are variable and function
names chosen to enhance
readability?
Does the code appropriately
deploy language capabilities to
avoid redundant structures, global
variables and unnecessarily
lengthy blocks of code?

- Code is entirely
uncommented.
- Global variables
are used without
justification due
to exceptional
circumstances.
- Code is not
differentiated into
functions or m-
files; i.e.
spaghetti code.

…

- Code is well commented.
- Code is properly indented and
variable and function names are
well chosen.
- Code is well structured.

Program execution (30%)
Evaluates the extent to which the
program functions in a way that
conforms to specifications.
Does the program execute?
Is the input and output of the
expected form?

- Program does
not run at all.

…

- Program is free of syntax errors
that impede execution.
- Program takes the expected
input parameters and returns the
expected output as required in the
specification in all respects.

Problem
Synthesis (30%)

Evaluates the degree to which the
solution satisfies the
specification.
Is the solution accurate and
robust?
Does it conform to the problem
specifications regarding format,
order and presentation?

- The solution
produces wholly
incorrect output
under all of the
tests run. …

- The solution produces correct
output in all cases with only
minor exceptions.
- All output meets specifications
regarding format, order and
presentation.

Computational
Literacy (20%)

Evaluates whether the student can
use the solution to approach a
disciplinary problem.
Can the student use their code to
address the disciplinary issue or
to solve a related problem?

- No solution
provided.

…

- A solution is provided that is
correct, clear and well
documented.

COMPUTERS IN EDUCATION JOURNAL 105

Table 3: Descriptive Statistics of student overall scores for each computational project.

 Problem Solving Phases

Total
 Problem

Recognition
Problem Framing /

Implementation
Problem
Synthesis Computational

Literacy

 Coding
Style Execution

Project 1 (N=21)

Mean 87.81 84.05 66.81 59.20 100 74.99

Std. Dev. 22.49 20.36 31.21 30.47 0 19.11

Project 2 (N=21)

Mean 100 100 96.10 98.43 96.62 97.68

Std. Dev. 0 0 9.05 3.84 4.79 3.14

Project 3 (N=21)

Mean 72.24 86.29 91.57 76.05 100 86.14

Std. Dev. 30.36 21.18 22.76 25.41 0 14.14

Project 4 (N=21)

Mean 68.95 98.24 98.29 97.57 89.90 93.46

Std. Dev. 44.38 2.82 5.71 5.76 22.10 8.21

Project 5 (N=20)

Mean 69.5 94 91.25 77.40 75.95 81.72

Std. Dev. 45.55 6.05 17.63 16.44 33.75 17.84

For the latter group of projects (i.e., projects 2
and 4), this coefficient depicts a weak
correlation (r < 0.2). Note that the problem
framing phase includes programming skills ---
suggesting that, at least for certain type of
projects, good programming skills support
students’ ability to evaluate their work. This
leads us to ask why the same programming
skills did not enable them to evaluate the
solution for projects 2 and 4.

We hope to shed light on this in the next
section as we discuss project characteristics in
detail.

The projects with available correlation
analysis of computational literacy with the
problem solving phases show a range of
correlation values: from weak (r=0.153) to
strong (r=0.529). The correlations for the

problem recognition phase with the other two
phases also showed a broad spectrum: strong for
project 5 (r>0.61), a moderate one for projects 1
and 4 (0.2<r<0.5), and weak for project 3
(r<0.2). Finally, the course final grade had a
positive strong correlation with the average
project score and each project score individually
(r>0.5). Only for project 4, students score was
not related with their overall performance of the
course (r=0.187).

Discussion and Conclusions

This study explored the implementation of a
problem-based computational science course for
materials engineering. The course employed an
inverted classroom approach [5] and organized
the different projects using the Integrated
Problem-Solving (IPS) [2] model. Specifically,
it assessed how it is possible to define student

106 COMPUTERS IN EDUCATION JOURNAL

performance through the relationship among
phases of the problem-solving process, and
computational literacy skills.

What are students’ performances on
disciplinary computational challenges when
configured as problem solving phases?

Student performance was considered to be
positive for all the project scores and for most of
the individual rubric criteria. This result
suggests that organizing the projects to follow
the problem solving phases can be effectively
used as a form of process scaffolding for
challenges in computational science and
engineering.

Students struggled to understand project 4 and
project 5, as evident from the low score in the
problem recognition phase. This could be
attributed to the design of the course, where
projects became progressively more challenging
as the semester advanced. The last two projects
consisted of modeling complex systems (heart
tissue and atoms in a material, respectively). In
both these projects the students programmed a
set of rules to reflect complex system behavior.
While they struggled to understand projects 4
and 5, they could still implement a solution.
They were also able to infer conclusions using
their code, a result that suggests that students
were able to obtain an understanding of the
system-level behavior.

The problem framing and problem recognition
scores in project 1 were not high, and student
performance for these two phases increased for
the rest of the projects. We considered two
hypotheses here: (1) students were not very
comfortable solving computational challenges
but their confidence increased as they completed
the first project; and (2) after implementing the
first projects they developed a better sense of
what was expected from the projects.

How does students’ performance on specific
phases of the problem-solving process on
different projects relate to the other phases, and
to student overall performance?

For the individual projects, different
correlation patterns were found. For projects 1,
3, and 5, problem framing and problem
synthesis were strongly related. These two
problem solving phases were also strongly
correlated to the overall project score and final
course grade. This result suggests that students
who adequately followed the problem solving
process, performed better than those who did
not. This is a direct implication for instructional
design, reinforcing the idea that setting up
projects so that students are required to go
through the problem solving process can help
them to solve computational challenges.

However, these relationships were not found
for projects 2 and 4. Moreover, projects 2 and 4
showed the highest scores among all the
projects with the lowest standard deviation. The
main difference between these two groups of
projects is that, in projects 2 and 4 students were
provided with more information about how to
structure the underlying algorithm. This
additional structure was necessary since the
subject of the modules, ordinary and partial
differential equations were not subjects with
which students were familiar prior to the course.
The additional support provided in crafting the
algorithm appears to have been sufficient for
students to properly implement a solution. On
the other hand, because of the higher level of
scaffolding, students may have been less
engaged in higher order levels of thinking,
limiting their ability to interpret their solution.
Another possible explanation relates to the
nature of the scaffolding that was provided. The
scaffolding was focused on the algorithm
structure, but the disciplinary and mathematical
content may have become the challenge to
interpret the results of the simulation.

Finally, the fact that student score for project 4
was weakly related to the course score also
suggests that the additional scaffolding provided
for project 4 may not necessarily have
contributed to the overall learning outcomes.
Nevertheless, project 4 needs to be further
explored in order to understand its
particularities.

COMPUTERS IN EDUCATION JOURNAL 107

How do students’ problem solving approaches
relate to their computational literacy skills?

The relationship between computational
literacy and the stages of the problem solving
process and the scores is not clear. For the
individual project scores no correlation was
found between computational literacy and
student performance. Scores with a zero or very
small standard deviation make it difficult to
identify these relationships. However, it is
important to highlight that most of the scores for
this particular criterion were very high (~92% in
average), and only for the last project was less
than 89%. This suggest that the effect on
disciplinary learning from building and
interpreting the solutions is helping students
approach the solution to the posed problems.

Overall, results from this study suggest that the
use of computational challenges aligned with
the problem solving phases can scaffold
students’ learning and computational literacy.
For the projects where the disciplinary content
is overwhelming for students, the scaffolding
should be focused on the specific subjects
instead of providing too much computational
support. Thus, further research is necessary to
identify what are the differences between
different types of challenges and the level of
scaffolding in student understanding and student
performance in transfer tasks.

Acknowledgements

This research was supported in part by the
U.S. National Science Foundation under the
awards #EEC1329262 and #EEC1449238.

References

1. P. Turner, L. Petzold, A. Shiflet, I.
Vakalis, K. Jordan, and S. St. John,
“Undergraduate computational science and
engineering education,” Society for
Industrial and Applied Mathematics Review
(SIAM Rev.), vol. 53, pp. 561-574, 2011.

2. T. A. Litzinger, P. V. Meter, C. M. Firetto,

L. J. Passmore, C. B. Masters, S. R. Turns, .
. . S. E. Zappe, “A cognitive study of

problem solving in statics,” Journal of
Engineering Education, vol. 99, no. 4, 2010.

3. SCANS Commission. What work requires

of schools: A SCANS Report for America
2000. Washington, DC: The Secretary's
Commission on Achieving Necessary Skills,
U. S. Department of Labor, 1991.

4. C. M. Vest, Educating Engineers for 2020

and Beyond, The Bridge, Washington, DC:
National Academy of Engineering, 2006

5. J. Hafner, “Atomic-scale computational

materials science,” Acta Materialia, vol. 48,
2000.

6. NSF, National Science Foundation Advisory

Committee for Cyber Infrastructure Task
Force on Grand Challenges Final Report,
2011.

7. A. J. Magana, M. L. Falk, J. M. Reese, JR,

“Introducing Discipline-Based Computing
in Undergraduate Engineering Education,”
ACM Transactions on Computing
Education, vol. 13, no. 4, 2013.

8. M. C. Carlisle, “Using YouTube to enhance

student class preparation in an introductory
Java course”. In Proceedings of the 41st
Annual Technical Symposium of Computer
Science Education (SIGCSE’10),
Milwaukee, WI, March 2010.

9. G. C. Gannod, J. E. Burge, and M. T.

Helmick, “Using the inverted classroom to
teach software engineering”. In Proceedings
of the 30th International Conference on
Software Engineering (ISCE’08), Leipzig,
Germany, May 2008.

10. N. Nagappan, L. Williams, M. Ferzli, E.

Wiebe, K. Yang, C. Miller, and S. Balik,
Improving the CS1 experience with pair
programming. In Proceedings of the 34th
Annual Technical Symposium of Computer
Science Education, Reno, NV, February
2003.

11. J. G. Trafton, and R. J. Reiser, “The

contribution of studying examples and
solving problems to skill acquisition”. In M.
Polson (Ed.), Proceedings of the 15th

108 COMPUTERS IN EDUCATION JOURNAL

Annual Conference of the Cognitive Science
Society (pp. 1017–1022). Hillsdale:
Lawrence Erlbaum, 1993.

12. A. A. diSessa, Changing Minds: Computers,

Learning, and Literacy. Cambridge: The
MIT Press 2001.

13. W.J. Leonard, W.J. Gerace, R. J. Dufresne,

and J.P. Mestre, “Concept-based problem
solving: Combining educational research
results and practical experience to create a
framework for learning from physics and to
derive effective classroom practices,” In
William J. Gerace, William J. Leonard,
Robert J. Dufresne, Jose P. Mestre, (Eds.),
Teacher's Guide to accompany Minds•On
Physics: Motion Kendall/Hunt, Dubuque,
IA, 1997.

14. J. Bransford, How People Learn: Brain,

Mind, Experience, and School, National
Academies Press, Washington, DC., 2000.

15. A. Rubin, Statistics for Evidence-Based

Practice and Evaluation; Cengage Learning:
Belmont, CA, 2009.

Biographical Information

Camilo Vieira is a Ph.D. candidate in Computer

and Information Technology at Purdue University.
He completed his undergraduate and his master’s
studies at Universidad Eafit, in Medellin Colombia.
He holds a bachelor’s degree in Systems
Engineering and a master’s degree in engineering.
He is currently research assistant for the ROCkETEd
group, where he works with computing education,
and learning analytics for engineering education.

Alejandra J. Magana is an Associate Professor in

the Department of Computer and Information
Technology and an affiliated faculty at the School of
Engineering Education at Purdue University. She
holds a B.E. in Information Systems, a M.S. in
Technology, both from Tec de Monterrey; and a
M.S. in Educational Technology and a Ph.D. in
Engineering Education from Purdue University. Her
research is focused on identifying how model-based
cognition in STEM can be better supported by
means of expert technological and computing tools
such as cyber-physical systems, visualizations and
modeling and simulations.

Anindya Roy is a Postdoctoral Fellow in the
Department of Materials Science and Engineering at
Johns Hopkins University. He received his Ph.D. in
2011 from Rutgers University. As a computational
physicist, Anindya's primary research focus is on
understanding materials important for energy
harvesting, storage and management, using
quantum-chemistry-based calculations. Besides
materials research, he is also interested in teaching at
the undergraduate level, and understanding the
pedagogical aspects of physics and engineering
education.

Michael L. Falk is a Professor in the Department

of Materials Science and Engineering at Johns
Hopkins University's Whiting School of Engineering
with secondary appointments in Mechanical
Engineering and in Physics and Astronomy. He
holds a B.A. in Physics and a M.S.E. in Computer
Science from Johns Hopkins University and a Ph.D.
in Physics from the University of California, Santa
Barbara. His education research focuses on
integrating computation into the undergraduate core
curriculum. Falk also serves as the lead investigator
for STEM Achievement in Baltimore Elementary
Schools (SABES) an NSF funded Community
Enterprise for STEM Learning partnership between
JHU and Baltimore City Schools.

Michael J. Reese, Jr. is the Associate Director of

the Johns Hopkins Center for Educational
Resources. He holds a B.S. in electrical engineering
from Virginia Tech, a M.Ed. in instructional
technology from the University of Virginia, and a
Ph.D. in sociology from Johns Hopkins University.
His research investigates how educational
innovations diffuse through higher education along
with their impact on student learning.

Appendix A: Description of the projects

Before the problem statement, all the projects
included a description of the disciplinary problem
and the mathematical model to represent it. All the
projects described in this section included an
additional activity in which students were required
to interpret the programmed solution.

Project 1: Calculating binary phase diagrams

Your assignment is to write 4 functions that
graphically represent and calculate the phases
present in a binary phase diagram. You will build
your program in 4 parts. Some functions will need to

COMPUTERS IN EDUCATION JOURNAL 109

use the prior functions, so make sure each works
well before moving on to the next. All functions
must be well documented with comments in order to
receive full credit. You must use the function
headers given below.

1. A function to calculate the free energy of a
pure phase at a given composition (15 points)

function G = FreeEnergy(x, HA, SA, HB, SB,

w, T)

2. A function that computes the convex hull. (40
points)

function [Gmin,Phases] =
ConvexHull(x,G1,w1,G2,w2)

3. A function that shows the convex hull. (15

points)

function ShowHull(HA1, SA1, HB1, SB1, w1,

HA2, SA2, HB2, SB2, w2, T)

4. A function that plots a phase diagram (35
points)

function PhaseDiagram(HA1, SA1, HB1, SB1,

w1, HA2, SA2, HB2, SB2, w2, Tmin, Tmax)

Project 2: Modeling HIV Response to Immune
Therapy

Your assignment is to write a computer program
that will model the progress of the HIV infection in a
patient that is being treated with a drug of a given
effectiveness, Q. The HIV infected patient is
assumed to start with a T-cell count of T(0)=1, this
being a healthy level, and having no infected T-cells,
I(0)=0. We assume that infection occurs at day 0 a
viral load of V(0)=0.01. We will assume that if a
drug is administered, therapy starts on the day of
infection. In the model, if the HIV infected patient’s
T-cell count, including both infected an uninfected
cells, falls below T+I=0.01 the patient is considered
to have developed AIDS. Your assignment should
follow the scheme laid out above and should be
composed of the following primary function and
sub-functions:

1. A function to initialize the variables and runs
the simulation

function Project2a(V0, Q, maxtime, minT)

2. A function to calculate the next day’s T-cell
count based on the current viral load and T-
cell count

function Tnext = NewT(T, V)

3. A function to calculate the next day’s infected
T-cell count based on the current viral load
and T-cell count

function Inext = NewI(T, I, V)

4. A function to calculate the next day’s viral
load count based on the current viral load, T-
cell count, and infected T-cell count

function Vnext= NewV(T, I, V, Q)

5. A function to increment the current viral load,
T-cell count, and infected T-cell count by one
day

function [Tnext, Inext, Vnext]= Increment(T, I,

V, Q)

Project 3: Crystal Structures and Cleavage Planes

Your assignment is to write a MATLAB function
that will write a file that contains the positions of the
atoms in a representative crystal that is either simple
cubic, body centered cubic or face centered cubic.
These crystals will have been cleaved along a plane
specified by the user such that the files only contain
the atoms on one side of the cleavage plane as well
as the atoms on the cleavage surface. The atoms on
the cleavage surface will be specially labeled. The
file output by your code will have 4 columns. The
columns will contain the following data about the
atoms:

x-position y-position z-position label

1. A function to return the atom positions and a
label for a specified crystal structure

function cleave(xtal, unitcells, plane, filename)

2. A function to read the positions and label

from the file and to plot spheres at the 3
dimensional coordinates specified by the
positions

function atomplot(filename)

110 COMPUTERS IN EDUCATION JOURNAL

Project 4: Modeling Heart Tissue and Diffusion of
the Electrical Potential

Write a program that will simulate the diffusion of
the electrical potential in the heart tissue. It should
contain the following procedures:

1. A function to take an NxN array and stimulate

a circular region with radiohs N/8 centered at
row r and column c by setting the values of U
in that region to 0.8

function U = StimTissue(U, r, c)

2. A function to create an initial condition where
U and V are NxN arrays that are zero
everywhere except for a circle of radius/8
centered at row (N+1)/2 and col (N+1)/2
which should have U=0.8.

function [U, V] = InitTissue(N)

3. A function to advance the clock on U and V
by one time step

function [newU, newV] = StepTissue(U, V, D,

dt)

4. A function to simulate a tissue that is
represented by two NxN arrays. The
simulation lasts T time steps. Every stime

steps a randomly located region of radius N/8
is electrically simulated

function SimTissue(N, T, stime, ptime, D, dt)

5. A function to simulate a tissue that is

represented by two NxN arrays. The
simulation lasts T time steps. Once, after stime
steps a region centered on row r and column c
of radius N/9 is stimulated.

function TestTissue(N, T, stime, r, c, ptime, D,

dt)

Project 5: Molecular Dynamics Simulation

Molecular dynamics simulates atoms as point
particles. Each atom has a position and a velocity,
and these quantities are updated according to
Newton's equations of motion. The model we will
consider will be as simple as we can make it and still
see interesting behavior. We will consider a two-
dimensional system composed of 64 like atoms
interacting via a very simple pair-wise interaction.
The atoms will only interact with other atoms within
some interaction range. The atoms will be kept in a
defined region of space by imposing "periodic
boundary conditions". You will provide the option
of holding the average kinetic energy of the atoms
fixed during the simulation. The code structure was
at student discretion.

Appendix B: Pearson correlation of individual project scores by rubric criteria.

Project 1

 Problem
Recognition

Problem
Framing

Problem
Synthesis

Computational
Literacy

Average
Project
Score

Course
Score

Total
Project

1

Problem
Recognition 1.000

Problem Framing 0.484 1.000

Problem
Synthesis 0.215 0.657 1.000

Computational
Literacy NA NA NA NA

Average Project
Score 0.453 0.888 0.864 NA 1.000

Course Score 0.171 0.682 0.733 NA 0.753 1.000

Total Project 1 0.450 0.839 0.886 NA 0.933 0.689 1.000

COMPUTERS IN EDUCATION JOURNAL 111

Project 2

 Problem
Recognition

Problem
Framing

Problem
Synthesis

Computational
Literacy

Average
Project
Score

Course
Score

Total
Project

2

Problem
Recognition NA

Problem
Framing NA 1.000

Problem
Synthesis NA 0.174 1.000

Computational
Literacy NA 0.261 0.280 1.000

Average Project
Score NA 0.735 0.459 0.362 1.000

Course Score NA 0.644 0.483 0.158 0.741 1.000

Total Project 2 NA 0.736 0.444 0.353 0.709 0.586 1.000

Project 3

 Problem
Recognition

Problem
Framing

Problem
Synthesis

Computational
Literacy

Average
Project
Score

Course
Score

Total
Project

3

Problem
Recognition 1

Problem
Framing 0.220 1.000

Problem
Synthesis -0.147 0.607 1.000

Computational
Literacy NA NA NA NA

Average Project
Score 0.270 0.735 0.644 NA 1.000

Course Score -0.013 0.644 0.605 NA 0.741 1.000

Total Project 3 0.166 0.703 0.885 NA 0.658 0.507 1.000

112 COMPUTERS IN EDUCATION JOURNAL

Project 4

 Problem
Recognition

Problem
Framing

Problem
Synthesis

Computational
Literacy

Average
Project
Score

Course
Score

Total
Project

4

Problem
Recognition 1

Problem
Framing 0.306 1.000

Problem
Synthesis 0.175 0.101 1.000

Computational
Literacy 0.444 0.228 0.230 1.000

Average Project
Score 0.353 0.735 0.205 0.390 1.000

Course Score 0.258 0.644 0.022 0.096 0.741 1.000

Total Project 4 0.808 0.353 0.427 0.812 0.437 0.187 1.000

Project 5

 Problem
Recognition

Problem
Framing

Problem
Synthesis

Computational
Literacy

Average
Project
Score

Course
Score

Total
Project

5

Problem
Recognition 1.000

Problem
Framing 0.669 1.000

Problem
Synthesis 0.612 0.622 1.000

Computational
Literacy 0.476 0.153 0.529 1.000

Average Project
Score 0.851 0.729 0.649 0.607 1.000

Course Score 0.598 0.643 0.728 0.477 0.751 1.000

Total Project 5 0.839 0.616 0.859 0.750 0.819 0.723 1.000

