
A PROCESSOR DESIGN PROJECT FOR A FIRST
 COURSE IN COMPUTER ORGANIZATION

Michael Black

American University

Abstract

Although many of today’s students are savvy
computer users, paradoxically they often find
computer design abstract and difficult to
visualize. To make the material more tangible,
we have developed a novel three part term
project that requires students to develop and
simulate their own processor. Students work in
teams to devise and encode their own
instruction set, design a datapath and
microcontrol instructions to execute their
instruction set, and simulate a model of their
processor on a computer.

While similar CPU design projects have been

offered at other institutions, this project is
unique for three reasons. First, it gives students
freedom to be creative by letting them design
their own instruction sets, while constraining
them to practical limits by requiring them to
encode their instruction set and compile a small
program for it. Second, by building a simulator
for their processor, students can actually see
their processor run a program. Third, the
project needs no special hardware or software,
and does not require the students to have any
extensive background experience either in
digital logic design or programming. It can
consequently be offered in programs that do not
have access to specialized equipment, and is
suitable for students across diverse disciplines.

This project has been given to three classes of

electrical engineering students and two classes
of computer science students at different
universities. Qualitative feedback was solicited
from each class. Students have universally
expressed that this project has made the subject
matter feel more tangible to them and has
greatly increased their enjoyment of the course.
Students have tended to take advantage of the

design freedom given to them by experimenting
with unusual instruction sets, and in one case a
team actually built their processor in hardware.

This paper describes the project itself in depth.

It further discusses the student populations on
which the project has been tried and the course
contexts in which it was given. Finally, the
paper looks at the student response to the
project and the creativity of their submissions.

Introduction

Many students have difficulty when

encountering computer organization for the first
time. This is due partly to the unfamiliarity of
the material, but is also because computer
architecture as a discipline is different from the
fields that students encountered earlier. Unlike
calculus, computer design has little underlying
theoretical foundation. Instead, from its
beginnings, computer design has always been a
process of trial and error, with modern
computers being designed the way they are
because “it works best”, rather than any deeper
theoretical reason. Students encountering the
field for the first time need to understand not
just how computers work, but why they work
that way, and what the process was that
convinced architects to build computers the way
they do.

In this paper we describe a CPU design project

for a first course in computer organization. The
project consists of three components: designing
an original instruction set, devising a datapath
and control unit, and writing a simulator for
their processor. Students completing this project
learn not only how processors work, but also
experience the tradeoffs and constraints
involved in designing a processor. Students
also learn to evaluate their processor in a similar

COMPUTERS IN EDUCATION JOURNAL 95

way to how processors are evaluated in actual
computer architecture research. This project has
been assigned to electrical engineering students
at the University of Maryland, College Park for
three semesters, and to computer science
students at American University for two
semesters.

Processor design projects are included in

computer organization classes at several other
universities. Courses that require students to
modify existing processor simulators are fairly
common[2,3]. Courses at Rose-Hulman and
Cornell[4,5] have students design processors
using specialized software, such as LogicWorks.
Processor design hardware kits have even been
produced to allow students to easily implement
computer design in hardware [1].

However, this project is unique for several

reasons. First, students are given creativity to
design their own instruction sets rather than use
a preexisting one. Second, unlike similar
projects at other universities, the project
requires no specialized hardware or software.
Third, the project does not require students to
know any particular background knowledge
before the course apart from basic
programming, a typical prerequisite for
computer organization courses. Fourth, by
requiring students to simulate and evaluate their
processors, the project teaches how real
processor research and evaluation are
performed.

In the next section of this paper, we describe

the student populations for which this project
was written. The next section describes the
three parts of the project in depth, and tells how
it was adapted for electrical engineering and
computer science classes. The final section
gives both qualitative and quantitative student
assessment of our project, and describes
examples of exceptional or follow-up student
work.

Student Populations

Electrical and Computer Engineering
Students at the University of Maryland

ENEE350, “Computer Organization”, is a

required course for all electrical engineering and
computer engineering students at the University
of Maryland, a large state university. Students
taking the course are expected to have taken
prior courses in digital logic design and
introduction to programming. Approximately
the first five weeks of the course teaches
assembly language in MIPS. The second five
weeks covers instruction set encoding and
datapath design. The remainder of the course
typically covers cache and virtual memory.

Our project was assigned to Frostburg State

University students for three semesters of the
course. The majority of the students were
juniors, with a handful of sophomores and
seniors. Each class had between 35 and 50
students. The classes also included between 3
and 6 distance students located at Frostburg
State University who were taking the class over
a television network. All students in the class
had access to computers running UNIX. The
students in these classes tended to complete the
projects in teams of three.

Computer Science Students at American
University

CSC540, “Computer Organization and

Design”, is a course offered at American
University, a primarily liberal arts institution.
CSC540 is a required course for all computer
science undergraduate students and computer
science graduate students who have not had an
equivalent course as an undergraduate. Students
taking this course are expected to have
substantial programming experience consisting
of at minimum two courses in computer science,
but have not necessarily had any prior exposure
to digital logic design. The course briefly
covers MIPS assembly, then covers instruction
set design, datapath design, and cache. The
course also covers pipelined and superscalar

96 COMPUTERS IN EDUCATION JOURNAL

processors, and some more modern processor
optimizations. CSC540 is generally a more
theoretical course than ENEE350.

Our project was assigned to two semesters of

American University students. The first class
consisted of eight students, who were a mix of
juniors, seniors, and masters-level graduate
students. The second class consisted of seven
students, who were a mix of sophomores,
juniors, and seniors. Students had access to PCs
running Windows and to a Java IDE. The
students in these classes tended to complete the
projects individually.

The Project

Project Objectives

When designing the project we had several

objectives.

 A Working Model

Much like similar successful projects assigned

at other schools, we want our students to have a
tangible processor when the project is
completed. Students should be able to see their
processor executing programs.

Creative Design

Processors designed over the decades have

differed vastly in instruction set and
architecture. We feel that students cannot
appreciate the design decisions and tradeoffs in
constructing a processor if they are dictated an
instruction set to use. The unique aspect of this
project, and the most challenging, is leaving the
choice of instructions, registers, and addressing
modes entirely up to students.

Understanding Microarchitecture

One of the core parts of a computer

organization course is understanding how a
computer can be formed from logic
components. We feel it is vital that students
design their own datapath.

The project is divided into three subprojects.
There are several reasons for this. First, it
forces students to space out their work and not
attempt the project at the last minute. Second,
since later parts of the projects build off of
earlier parts, students are able to get feedback
on earlier stages of the project and make
corrections in time. Third, later portions of the
project depend on the students knowing material
that is not typically discussed until partway
through the course. Dividing into parts allows
students to complete substantial portions of the
project before this material is taught.

Subproject 1: Instruction Set

The first subproject requires the students to

design and encode their own instruction set.
The project requires students to determine
which registers their machine should have,
create a sequence of machine instructions, and
produce a unique binary encoding for each
instruction. The students are restricted to a
fixed-length encoding of 8 bits/instruction, and
their instructions must be capable of addressing
at least 256 bytes of memory. Copying an
existing instruction set is not permitted. At
minimum, instruction sets must contain
instructions that transfer data between registers
and memory (if they choose to have registers),
basic arithmetic instructions, and conditional
control instructions. To ensure that their
instruction set is capable of running real
programs, students are given a small for loop in
C or Java that adds a series of numbers together
and stores the result in memory. Students are
required to translate this program into their own
assembly code and machine code and submit
that with their instruction set. The first
subproject is submitted in paper form as a
report; students are required to explain and
justify their choices of instructions and
registers. Figure 1 shows the instruction sets
submitted by two students for this subproject.

When beginning the first subproject, students

have written simple programs in an assembly
language (usually MIPS), and have had at least

COMPUTERS IN EDUCATION JOURNAL 97

one lecture on encoding instructions. Students
are typically given two weeks to complete this
first subproject, which is usually ample time.
The second subproject is not usually assigned
for at least another week. This gives time for
the submissions to be graded and returned, and
for the students to make corrections to their
instruction set before beginning the next part.
The subproject is primarily graded on whether
the instruction set is well chosen and correctly
encoded, as well as whether the small program
is compiled correctly. Submissions are also
graded on creativity; students earn extra points
if their instruction set is substantially unlike any
that they studied before, or has any particularly
inventive features.

98 COMPUTERS IN EDUCATION JOURNAL

Subproject 2: Microarchitecture

For the second subproject, students are

required to design a datapath and control
instructions that will execute their instruction
set. By the time this project is assigned, the

course has covered block diagrams of datapaths
and microassembly control code. The students
will have also received their graded instruction
set submission and have made the necessary
changes. Two weeks is typically given to
complete this subproject, and like the first, it is
submitted as a report.

Students are required to submit a detailed

schematic of their datapath. The datapath must
consist solely of registers, including special
registers such as the program counter and
instruction registers, register files, ALUs,
multiplexors, sign extension units, and the wires
connecting them together (students are not
required to design the ALU). The datapath does
not need to show the control state machine, the
control input to the multiplexors, or the clock
input to the various registers. Figure 2 shows an
actual datapath submission. Students are also
required to submit their control code. The
control code for each instruction must be written

Figure 1: Two Student Instruction Sets.

in a series of microassembly instructions. For
each microassembly instruction, students must
specify the state of each multiplexer and device
in their system requiring a control input, and
must also specify which registers receive data
on that instruction. Although students are not
specifically required to design the control state
machine, they have provided the necessary
information needed to build it.

Subproject 3: Simulator

The third subproject requires students to

program a simulator for their processor, using
their control code from the second subproject.
To demonstrate that their simulator works
correctly, and to study the efficiency of their
processor, the project requires students to

execute the program from subproject 1 on their
simulator with varying data sizes. Students are
given two to three weeks to complete this
project. When completed, students must submit
their simulator code, their simulator output file,
and a report discussing the performance of their
processor.

The processor simulator is written either in C

or in Java, and models the registers, RAM, and
other components of the machine. Simulators
are required to be cycle-accurate, meaning that
each microassembly control instruction must be
modeled. Students start their simulation by
loading the machine code of the subproject 1
program into the simulated RAM array. When
the simulation is concluded, their simulator

Figure 2: Student Datapath Submission.

COMPUTERS IN EDUCATION JOURNAL 99

must write the contents of memory to an output
file, allowing students to verify that their
program worked correctly. The simulator also
prints out the number of instructions executed
and the number of simulated cycles, allowing
students to evaluate the instruction/cycle
performance of their processor. Figure 3 shows
a screenshot of a simulator submitted by a
student. In this particular example, the student
added a GUI, assembler, and step-by-step tracer
to his project.

In some classes to which this project is given,

many students do not have sufficient
programming skills to write a processor
simulator from scratch. For these classes,
students are provided template simulator code in
C. This template contains the code to load a
machine code text file into simulated RAM, step

through a series of cycles, and write the
simulated RAM to an output file. Given this
template, students need to add their registers as
variables, and their microassembly instructions
to the main simulation loop reformatted as C
commands. The programming required in this
part, once the template is given, has been found
to be within the ability of practically every
student attempting the project.

Adaptations

Because the background experience of

computer science students is different from that
of electrical engineering students, the project
assigned in CSC540 had some minor differences
to that assigned in ENEE350, and the guidance
needed on various parts of the project was
different for the two groups of students.

Figure 3: Student Simulator Submission.

100 COMPUTERS IN EDUCATION JOURNAL

The danger of the first subproject is that
students might create an instruction set that is
not Turing Complete and is incapable of
executing some programs. Students
consequently need guidance to ensure that their
instruction sets are sufficiently comprehensive.
The nature of the guidance, however, is
different for the different majors. The project
assigned to the electrical engineering students
included a description of the types of
instructions needed in the processor. While no
instructions were explicitly named, a detailed
description of the types of instructions needed,
such as arithmetic instructions or immediate
loading instructions, was provided with the
project description. With the computer science
students, since they have had some formal
mathematical training, a different approach was
used. They were provided with a sample RiSC
instruction set that is Turing Complete. In their
subproject 1 report, they were required to use
that given instruction set to prove that their
instruction set was also Turing Complete.

The second subproject was generally easier for

the electrical engineering students than the
computer science students, as the electrical
engineering students had previously taken a
digital circuit laboratory course and had better
understanding of how registers and multiplexors
work. To compensate for this, the second
subproject assigned to the computer science
students included a sample datapath and control
to handle two of the instructions from the RiSC
instruction set; this was unnecessary for the
electrical engineering students.

As mentioned before, a simulator template was

given to the electrical engineering students for
the third subproject. This was unnecessary for
the computer science students, who were also
consequently given a choice of languages (all
chose Java). As the third subproject is
principally a programming project, computer
science students were also able to go further
than the electrical engineering students, and
build more elaborate simulators, some including
a GUI component or an assembler. In contrast,

the electrical engineering students typically
submitted more basic simulators, but designed
more creative instruction sets.

Concerns and Solutions

Over repeated offerings of this project, we

found that students tended to make similar
mistakes. Below are the most common errors
and our solutions.

Instruction set is similar to MIPS.

Our first concern was that the students'

instruction sets would be identical to MIPS.
This tended to happen frequently the first time
the project was offered. Students would submit
instructions that had the same format and
purpose as the equivalent MIPS instructions, in
most cases simply renaming the instruction.
This problem was largely solved in subsequent
classes by giving students examples of diverse
instruction sets, including 8080, x86, JVM,
PDP-8, and Alpha.

 Instruction set is too ambitious.

Our finding was that excessively ambitious

instruction sets tended to come from the best
and worst students in the class. The best
students tended to devise complex machines
with many layers of dereferencing. Students
with poor understanding of course material
tended to include instructions that are simple to
understand but complex to implement, such as
floating point arithmetic or structured
programming concepts such as while-repeat,
and generally omitted branch instructions.
These problems were generally easy to repair.
In most cases, the instruction set could be made
practical by simply removing instructions,
rather than making large changes.

Datapath is unable to execute the
instructions.

There were only a couple problems that tended

to occur in students' datapath designs.

COMPUTERS IN EDUCATION JOURNAL 101

• Misuse of buses to make the datapath
excessively simple

• Difficulty in handling immediate values,
especially sign extension

Our solution to the first problem was to

prohibit buses in datapaths and require students
to draw dedicated wires between all
components. This tended to make the datapaths
much more clear and correct. The second
problem was largely solved by explicitly
discussing immediate handling in class and
showing how it is handled in a variety of
existing architectures.

Student Response

Surveys

In addition to the qualitative feedback,

quantitative feedback on the project was
solicited from the first class of electrical
engineering students and the first class of
computer science students. The electrical
engineering students were asked to write an
evaluation of the project as part of their
subproject 3 report. Of the 16 project teams, 4
teams called the project “enjoyable”, 6
described it as “a good learning experience”, 2
stated that it “made them better engineers,” and
1 team described it as “the best project since
they began college.” 3 teams described the
project as “generally recommended”, but felt it
needed to give more guidance in instruction set
design.

The computer science students were given a

survey of 11 questions which they submitted
anonymously along with the course evaluation,
of which 6 asked for a numerical response. The
mean response, on a scale from 1 to 5 (with 5
being most and 1 being least), is shown in Table
1.

Advanced Work

7 of the 8 computer science students and 13 of

the 16 teams (35/44 students) in the first class of
electrical engineering students completed the

How well did the projects help you learn
the overall course material?

4.38

How well did the projects help you
visualize how processors work?

4.63

Did you enjoy the projects? 4.50
Were the projects appropriate to your
background as a computer scientist?

4.43

Do you feel that the projects gave you
an opportunity to think creatively?

4.50

Was the division of the overall project
into three components helpful for you?

4.13

Table 1. Student evaluations of the project.

project successfully. Of those, 5 computer
science students and 6 electrical
engineeringteams (17 students) completed
significantly more than the project required.
Examples of advanced work included highly
creative instruction sets, assemblers, and a
hardware implementation.

5 computer science students and 5 electrical

engineering teams experimented with
instruction sets vastly different from the MIPS
instruction set they had studied before. These
instruction sets included stack-based
architectures, accumulator-based architectures,
and instruction sets with multiple levels of
indirection.

5 computer science students and 1 electrical

engineering team wrote assemblers for their
architecture. The assemblers parsed their
assembly language, performed syntactical error
checking, and produced a machine code file
readable by their simulator. The students
demonstrated their assemblers for a variety of
programs.

One computer science student successfully

designed a three-stage pipeline for his processor
in addition to a nonpipelined design. The
students evaluated the performance increase
from the nonpipelined processor to the pipelined
one.

102 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATION JOURNAL 103

A team of four electrical engineering students
implemented their processor in hardware for
independent study credits. The students
redesigned their machine in Verilog, wrote a
softcoded control ROM for their processor,
implemented the processor on an FPGA, and
interfaced it with LEDs and switches. The
students demonstrated their processor for
several different programs.

Acknowledgements

The author would like to thank his students for

giving permission to publish screenshots of their
project work as long as they remained
anonymous. The author also thanks the
reviewer for the helpful comments and
corrections.

References

1. L. Kalampoukas, A. Varma, D. Stiliadis and
Q. Jacobson, "The CPU Design Kit: An
Instructional Prototyping Platform for
Teaching Processor Design," Workshop on
Computer Architecture Education, Int'l
Symposium in Computer Architecture,
1995.

2. T. Stanley and M. Wang, “An emulated

computer with assembler for teaching
undergraduate computer architecture,”
Workshop on Computer Architecture
Education, Int'l Symposium in Computer
Architecture, 2005.

3. L. Udugama and J. Geeganage, “Students’

Experimental Processor: A processor
integrated with different types of
architectures for educational purposes,”
Workshop on Computer Architecture
Education, Int'l Symposium in Computer
Architecture, June 2006.

4. Course Syllabus for CS316 at Cornell
University. http://www.cs.cornell.edu/
courses/cs316/2006FA/projects123

5. Course Syllabus for CSSE 232 at Rose-

Hulman Institute of Technology.
http://www.rose-hulman.edu/class/csse/csse
232/0506b/www/index.shtml

Biographical Information

Michael Black earned his Ph.D. in Electrical

Engineering from the University of Maryland,
College Park, in 2007. His is currently as
Assistant Professor of Computer Science at the
American University. His research interests
include computer architecture and computer
science education.

http://www.cs.cornell.edu/%20courses/cs316/2006FA/projects123
http://www.cs.cornell.edu/%20courses/cs316/2006FA/projects123
http://www.rose-hulman.edu/class/csse/csse

	Introduction
	Student Populations
	Electrical and Computer Engineering Students at the University of Maryland
	Computer Science Students at American University

	The Project
	Project Objectives
	 A Working Model
	Creative Design
	Understanding Microarchitecture

	Subproject 1: Instruction Set
	Subproject 2: Microarchitecture
	Subproject 3: Simulator
	Adaptations
	Concerns and Solutions
	Instruction set is similar to MIPS.
	 Instruction set is too ambitious.
	Datapath is unable to execute the instructions.

	Student Response
	Surveys
	Advanced Work

	References

