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Introduction 

 
Solutions to transient conduction problems 

with convection boundary conditions involve 
infinite series that usually converge rapidly.  
Evaluation of these series requires the 
computation of eigenvalues from equations that 
can only be solved by trial and error.  Because 
this process is rather tedious, several 
approximate methods have been developed.  
These methods are less tedious to apply than the 
exact solution, but they must be used with care. 

This article makes a comparison of the exact 
solution to transient heat conduction in a sphere 
to three approximate methods: the lumped 
capacity method, the Heisler chart method, and 
the Heat Balance Integral method.  Mathcad 
software was used with each of these methods. 

 
Approximations  to  the  Exact  Solution 

 
One-dimensional, unsteady heat conduction in 

a sphere is governed by the following partial 
differential equation: 
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This equation is usually solved by assuming 

that the temperature can be represented as the 
product of two functions, one a function of 
radius only and the other a function of time 
only.  Application of boundary and initial 
conditions leads to the following general 
solution: 
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Figure 1 
Finding Eigenvalues

 
 
 
 
 
 
 
 
 
 
The principal source of tedium in generating 

the exact solution is finding the eigenvalues λi, a 
process that can only be done by trial and error.  
Use of modern computer tools such as Mathcad 
can remove much of the tedium.  Figure 1 
shows part of a Mathcad worksheet that finds 
the first eigenvalue from Equation 3 above.  
Because trial and error is required, a Mathcad 
solve block is used.  Additional eigenvalues 
were found by choosing other guess values.  
The values of A1, A2, and A3 were calculated by  
substituting the first, second, and third 
eigenvalues into Equation 2.  A Mathcad 
function   was     created  based   on   Equation 1  
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above.  The function for a two-term 
approximation to the exact solution is 
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It is generally accepted[1] that a solution based 

on just one term of this series is accurate within 
2% for values of dimensionless time, τ, greater 
than 0.2.  The graph in Figure 2 shows the 
dimensionless temperature at the center of the 
sphere for τ less than 0.2.  Clearly, the one-, 
two-, and three-term approximations to the 
exact solution converge as τ approaches 0.2 
from the left. 

The dimensionless temperature should 
approach one as τ approaches zero.  All three 
approximations deviate from one when τ is 
sufficiently small.  As the graph shows, the one-
term approximation diverges from the other two 
at values of τ less than 0.2.  The two-term 
solution appears to be accurate to about τ = 
0.06, and the three-term solution appears to be 
accurate to about τ = 0.04.  As more terms are 
added, the solution can be expected to be 
accurate to even smaller values of τ.  This is of 
questionable merit, because at τ = 0.06, the 
dimensionless temperature is already close to 
0.98 for both the two- and three-term 
approximations. 
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Figure 2 
One‐, Two‐, and Three‐Term Approximations to Center Temperature of 

Sphere 
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The  Lumped  Capacity  Approximation 
 
The simplest of the approximate methods is 

called the Lumped Capacity Method.  In this 
method, it is assumed that conduction within the 
sphere is much more rapid than convection from 
its surface.  As a result the sphere is considered 
to be at a uniform temperature.  A solution is 
obtained by equating the rate of change of 
internal energy of the sphere to the rate of 
convection from the surface.  The differential 
equation is: 
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where m is the mass, CP is the heat capacity, h is 
the convection coefficient, and As is the surface 
area of the sphere.  The familiar solution is: 
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This solution is considered valid if the Biot 
number is less than 0.1. 
 

In this case, the Biot number is defined as 
h·L/k, where the representative length L is 
defined as the volume divided by the surface 
area.  In the case of a sphere, this is one third of 
the radius.  In the denominator, k is the thermal 
conductivity of the sphere. 

 
The  Heisler  Chart  Approximation 

 
This approximation is based on the first term 

of the Fourier series exact solution.  Charts of 
this solution are widely available in heat transfer 
textbooks and in handbooks.  As indicated in 
Figure 2, the one-term approximation is quite 
accurate for τ > 0.2. 

 
 
 
 
 
 
 

The  Heat  Balance  Integral  HBIM) 
Approximation 

 
Details of this method are to be found in Chen 

and Kuo[2].  This method is also considered 
valid for τ > 0.2.  Because the equations for the 
HBIM approach are quite complex, they are not 
reproduced here.  Interested readers should 
consult Reference 2 for this information. 

 
A  Comparison  of  Methods 

 
All of the methods above have been applied to 

a sphere of radius 2.75 cm with the following 
properties: k = 0.632 W/m/ºC, ρ = 1000 kg/m3, 
CP = 1.0 kJ/kg/ºC.  The sphere is initially at a 
uniform temperature of 8ºC.  At time zero it is 
submerged in a fluid at 100ºC with convection 
coefficient 22 W/m2/ºC.  The temperatures at 
the center and surface of the sphere after 3 and 
20 minutes are to be found. 

 
For the conditions stated above, the Biot 

number is too large by about a factor of three, so 
the Lumped Capacity approximation should not 
be considered valid at either time.  The value of 
τ is 0.15 at three minutes and 1.0 at 20 minutes, 
so the Heisler Chart and Heat Balance Integral 
approximations should be valid at 20 minutes 
but invalid at 3 minutes. 

 
Table 1 shows a comparison of results after 3 

minutes for the following methods: Lumped 
Capacity, Heat Balance Integral, one-term 
Fourier series (Heisler Chart), two-term Fourier 
series, and three-term Fourier series.  As noted 
above, Lumped Capacity, Heisler Chart, and 
HBIM are not valid.  Despite that, Heisler Chart 
and HBIM agree quite well with the two- and 
three-term approximations to the exact solution.  
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Table 1 

Sphere Temperatures (ºC) at 3 Minutes. 
 

 Lumped Cap HBIM 1-Term 2-Term 3-Term 
Center 40 18 19 20 20 
Surface 40 47 47 47 47 

 
 

Table 2 
Sphere Temperatures (ºC) at 20 Minutes. 

 
 Lumped Cap HBIM 1-Term 2-Term 3-Term 
Center 95 89 89 89 89 

Surface 95 93 93 93 93 
 
 
As expected, Lumped Capacity does not give a 

useful solution. 
 
Table 2 shows a comparison of results after 20 

minutes for the same methods.  The value of τ is 
1.0, so Heisler Chart and HBIM are valid.  All 
methods except Lumped Capacity agree within 
one degree Celsius.  Even Lumped capacity is 
fairly close with an error of five or six degrees 
Celsius at the center and two degrees Celsius at 
the surface.  Of course, the asymptotic solution 
as time goes to infinity is a uniform temperature 
of 100ºC throughout the sphere.  Thus the 20 
minute case is not particularly demanding. 

 
Conclusion 

 
Calculations for the three-term Fourier series 

solution for transient heat transfer in a sphere 
subject to a convection boundary condition are 
quite tedious.  Equivalent calculations for the 
Heat Balance Integral Method are even more so.  
The author has created Mathcad templates for 
both approaches and made these templates 
available to students on a course Web site.  Thus 
there is no need for students to “reinvent the 
wheel” in order to explore these methods. 
 

The numerical values presented above are 
taken from an assignment in which students 
compare methods for solving transient heat 
transfer.  This assignment is used to help them 

gain an appreciation for the range of 
applicability of several approximate solution 
techniques. 
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