
6  COMPUTERS IN EDUCATION JOURNAL 
 

MOBILE   GAMING   AND   THE   ZUNE 
 

William  Birmingham 
Computer  Science  Department 

Grove  City  College 
 

Abstract 
 

Classes in mobile gaming are very popular 
with students and provide them with knowledge 
and programming skills that are in great demand 
in both industry and graduate research 
programs. These classes can provide experience 
in the following areas: software engineering, 
advanced programming in modern object-
oriented environments, user-interface design, 
networking, real-time programming, as well as 
principles of game design and programming. 
Until recently, mobile gaming required 
machines that were either costly or required 
special licensing. The Microsoft Zune, however, 
avoids those problems. The Zune is relatively 
inexpensive and is supported by an excellent 
SDK and IDE, both of which are free. In this 
paper, we describe our experience teaching 
mobile gaming with the Zune. We explain how 
the Zune platform is used, we outline the projects 
we use, the topics covered in lecture, and we give 
examples of game developed by students. In 
addition, we provide student assessment of the 
course. We describe how the course supports our 
ABET course and program outcomes. 
 

Introduction 
 

Mobile gaming is one of the most important 
and growing segments of the computer games 
industry[1]. It drives hardware and software 
innovation in the smartphone market segment, 
particularly among iPhone, Android and 
Windows Mobile devices. Mobile gaming also 
drives innovation in the gaming console market, 
particularly for Sony and Nintendo. 

 
Mobile gaming is a great educational 

opportunity.[2] (See Kurkovsky [3] for an 
excellent bibliography of work in this area.) 
Classes in mobile gaming are very popular with  

students and provide them with knowledge and 
programming skills that are in great demand in 
both industry and graduate research programs. 
The classes can provide experience in the 
following areas: software engineering, advanced 
programming in modern object-oriented 
environments, user-interface design, 
networking, real-time programming, as well as 
principles of game design and programming. In 
fact, gaming draws on physics and mathematics 
as well. All in all, mobile game programming is 
an excellent capstone undergraduate experience.  

 
The downside to these classes is that they 

require hardware and programming 
environments that are expensive, or difficult to 
acquire (e.g., professional game-development 
kits) or both. The cost alone can make these 
courses difficult to offer, particularly at smaller 
institutions with small budgets. Moreover, to 
use many of these development systems, 
students and faculty are required to sign non-
disclosure agreements. 

 
There is a simple, relatively inexpensive 

alternate: the Microsoft Zune.[4] The Zune can 
be programmed with Visual Studio 2008 and 
XNA 3.1[5] (an excellent game programming 
SDK by Microsoft), both of which are available 
for free. The Zune is a capable platform that 
supports 2D graphics, networking, media 
playback (music and pictures), and has game-
friendly input devices. While the Zune does not 
have the graphics power of the iPhone or 
specialized consoles like the Sony PSP [6], it 
has more than enough power for 2D games. The 
cost for a Zune is around $120, or even less, and 
there are no additional expenses. In addition, 
there are no non-disclosure agreements to sign. 

 
We have used the Zune in our advanced 

console-gaming   course,    along     with    more  



COMPUTERS IN EDUCATION JOURNAL 7 

sophisticated systems like the Xbox 360 and 
other console platforms, for two semesters. The 
Zune platform, while met with some skepticism 
at first by students, has proven to be popular and 
is an excellent platform for educational 
purposes. Students get the chance to develop 
unique and fun networked, multiplayer games 
by five weeks into the term. 

 
In this paper, we describe our experience 

teaching mobile gaming with the Zune. We 
explain how the Zune platform is used, the topics 
covered in lecture, and we give examples of 
game developed by students. In addition, we 
provide student assessment of the course. We 
describe how the course supports our ABET 
course and program outcomes. 

 
The  Games  Classes 

 
The Computer Science Department at Grove 

City College has a three course sequence in the 
design and implementation of computer 
games[7]. We overview the material in these 
classes in the following sections. 

 
2D  Games 
 

The first course in our sequence introduces 2D 
gaming and covers basic elements of game 
design and game-engine implementation. A 
game engine, even a relatively simple one for 2D 
applications, is a large piece of software that is 
typically developed, in our class by teams of 
three students. The engine consists of about 10 to 
15 different source files (in c# for our class), 20 
to 30 graphics assets, and 10 to 20 audio assets. 
Building a system this large forces students to 
use object-oriented design principles, which they 
learned in the three programming classes that 
proceed the games class.  

 
In addition, the students must employ good 

algorithm design, especially with regard to 
memory usage, in order to have reasonable 
performance of their games, such as to avoid 
“jerky” sprite motion and missed collisions 
among the sprites. This activity reinforces what 
the students learn in data structures and 
algorithms classes. 

The course covers basic physics needed for 
arcade-style games. In addition, we cover 
geometry needed for collision detection, such as 
ray-plane intersections, sphere-sphere 
intersection, and so forth. The mathematics is 2D 
vectors and some calculus (for the physics). The 
course also introduces basic AI concepts for 
tracking,  evading, and pathfinding using 
algorithms like depth-first search, best-first 
search, and heuristic search (greedy and A*). 

 
We cover basic gaming techniques, such as 

moving sprites on a screen, implementing good 
game mechanics, creating splash screens and cut 
scenes, and so forth. In addition, we cover, albeit 
briefly, meeting real time constraints, since the 
games must operate at a minimum of 30 frames 
per second. 

 
At the end of this course, the students are very 

good at designing and building 2D games of 
reasonable length—a game will take from 10 to 
30 (or more) minutes to play to completion. The 
students develop three games over the semester, 
with the third game an extension of the second. 

 
3D  Games 

 
The next course in our sequence introduces 3D 

graphics and physics. While game design 
principles are similar between 2D and 3D games, 
the designer has a much “larger palette” in which 
to create a game. This larger palette does create 
an unusual problem: CS students are naturally 
drawn to “cool technology” and make game play 
a secondary concern. Thus, some students make 
great tech demos, but an impoverished game. 
Thus, we have to constantly stress the importance 
of game play elements during the term.  

 
An important element in this course is camera 

work: the type of camera (e.g., first person) and 
how it is used has tremendous implications for 
game play. Yet, cameras are hard to code, let 
alone use in an effective way. To help students 
understand how the camera is used, we have 
them critically review camera work in both 
games and movies. The same holds for lighting, 
it presents both technical and gameplay 
challenges. 



8  COMPUTERS IN EDUCATION JOURNAL 
 

All the software engineering (object-oriented 
design) and algorithms concepts they used in the 
first course are present in this course as well, 
only they are more advanced. The 3D game 
engines are significantly larger with about double 
the number of code files and assets. Moreover, 
algorithm design and coding are more 
challenging and important as the performance 
constraints are very demanding. 

 
3D graphics and physics require much more 

sophisticated mathematics than 2D, particularly 
with linear algebra and geometry. Of course, the 
graphics and physics move to 3D. The students 
learn about the graphics pipeline, and vertex and 
pixel shaders. They must become comfortable 
with multiple coordinate spaces (e.g., local, 
world and camera) and transforming objects 
among them. Our students usually do not have 
much trouble with the math or physics, but tend 
to have trouble visualizing how math affects the 
graphics (i.e., models do not appear where they 
“should”), which makes it hard to debug a game.  

 
Finally, in the 3D course, we introduce 

modeling. The students create a range of models, 
from simple rectangles to fairly complex avatars 
(which are not animated). They also learn how to 
create terrain with height maps and multiple 
textures. 

 
At the end of this course, students have good 

background in many aspects of 3D game design 
and development. 

 
Networked  Gaming 
 

The final class in the games sequence is console 
gaming. For this class, we emphasize 
multiplayer, networked gaming using two 
console systems: the Microsoft Zune and the 
Xbox 3601. For purposes of this paper, we will 
concentrate on the Zune aspects of the course; 
the Xbox 360 allows students to expand on 
concepts used to program the Zune. 

 
                                                                 
1 We have available development systems for other consoles, 

which require special licensing. Some students use these 
systems for their projects. 

Multiplayer, networked gaming offers a 
significantly different gaming experience than 
“arcade-style” games. One of the clear 
differences is that players compete or cooperate 
with each other, not simply against non-player 
characters (NPC). Thus, the style of gaming 
changes, and game play elements must change as 
well. In particular, we focus on how to create a 
game for multiple players—what works and what 
does not—and deemphasize the design of NPCs. 
This in turn reduces the amount of AI we cover 
in class. 

 
From a technical perspective, the design 

choices greatly expand. We list a few examples 
here: 

 
• Should the players share a screen or have 

unique views of the game. In other words, 
is there a common camera or separate ones 
for each player? 
 

• How is computation divided among 
multiple machines? For example, is 
collision detection handled on local 
machines? Does a “host” machine calculate 
scoring and enforce rules, or is that task 
distributed? 

 
• How does a game start and end? If players 

are distributed on the network, it is 
important that no player can begin a game 
before the other players are ready to play. 

 
• How are packet loss and latency mitigated?  

 
• For mobile gaming: how to implement 

reasonable game mechanics if the player is 
running, or at least moving, and has a 
relatively small screen (QVGA) on which 
to play the game? 

 
For about half the term, we concentrate on 

mobile and pervasive games.[8] Pervasive games 
are played in the real world as well as the virtual 
world of their games. Often, the location of the 
player in the real world may affect what the game 
does. For example, a player must traverse a 



COMPUTERS IN EDUCATION JOURNAL 9 

playing area to find tokens or move around to 
avoid being “assassinated” by another player. 

 
Clearly, this is not the case with non-pervasive 

games. We draw a distinction here with mobile 
gaming: in mobile gaming, the general idea is to 
give a console-like gaming experience on a 
handheld device. These games do not typically 
interact with the physical world—they played the 
same way no matter where you are. Students are 
free to build either type of game, although the 
Zune is better suited for mobile gaming. 
 

For mobile gaming, the students build 2D 
games. There are two reasons for this: the Zune 
does not currently support 3D gaming2, and 
building multiplayer, networked gaming is 
difficult enough that we want to simplify the 
coding and math as much as possible. Thus, the 
lack of 3D support in the Zune suits our 
pedagogical requirements well. 

 
Table 1 provides the ABET program outcomes 

for the course.  
 
Over the past two offerings of the Console 

class, students have created an impressive set of 
games. We list a few of these below3: 

 
• An assassins game where players “attack” 

each other by passing a token among 
Zunes. The game is played over several 
hours across campus. The player wins by 
being the last one assassinated.  

 
• An “audio surfer” platform game, where 

the platform heights, and power up and 
enemy spawn rates are controlled by the 
music to which the player is listening.  

 
• A multiplayer role-playing game (RPG) 

where the objectives and maps are 
generated dynamically based on the music 
to which the player is listening. 

 

                                                                 
2 The Zune HD, a new device, does support 3D gaming. As of 

now, the SDK does not expose this capability. 
3 Many of these games are available for download at : 

www.gcc.edu/dept/cs/downloads.html 

• A series of mini-game challenges, where 
the players run around a playing area. In 
different parts of the playing area, different 
mini-games are played (the locations are 
defined using a separate set of Zunes that 
act as “hosts” and are hidden from the 
players’ view). The player finishing first 
and getting the best scores on the mini-
games within a time limit wins.  

 
• An RPG where the player explores a city 

whose streets are populated with album 
cover art; the streets are organized into 
neighborhoods based on music genres. The 
objective is to find more objects than the 
other player within a time limit. 

 
The  Zune 

 
The Zune is a good choice for the console class. 

It has networking, reasonable controls (a 
thumbstick and three buttons) and screen, and it 
provides access to a large music and texture 
(picture) library. The library’s content can be 
loaded by the game, or the game can access the 
content placed in the library by the user. The 
device has a fairly small memory size for an 
application to run within; however, all assets can 
be loaded into the media library, which is much 
larger (8 Gbytes for our devices). As with the 
lack of 3D graphics, the limited memory serves a 
good pedagogical purpose by making students 
think carefully about memory use and 
encouraging efficient programming. Both of 
these things are easy to ignore on a laptop. All in 
all, the device has sufficient power and is a nice 
gaming platform.  

 
The Zune, however, is not quite as useful for 

pervasive gaming, as it does not support any type 
of location service. We worked around this by 
placing Zunes in the world and using them as 
beacons or hosts. 

 
 



10  COMPUTERS IN EDUCATION JOURNAL 
 

Table 1: ABET Course Outcomes. 
 
(c) An ability to design, implement, 
and evaluate a computer-based system, 
process, component, or program to 
meet desired need 
 

Students will write specifications for the games they create, with 
emphasis on good game play and a sophisticated gaming experience. 
Students will develop games—including code, artwork, sound effects, 
and music—to realize the specifications. 
 

(i) An ability to use current techniques, 
skills and tools necessary for 
computing practice 

Students will develop the software for their games for the Microsoft 
Zune and the Microsoft Xbox 360 using Microsoft XNA 3.1. The Zune 
games will be implemented in c#.  
 
To run their games, students will use the Zune and the Xbox 360 as 
attached, development hardware. In other words, games will not run on 
Windows machines, and thus must be loaded and debugged on 
different hardware. These techniques are common for embedded 
computer applications, mobile device applications, etc. 
 
In addition, students will read papers from the games literature to find 
the latest techniques and best practices. 
 

(j) An ability to apply mathematical 
foundations, algorithmic principles, 
and computer science  theory in the 
modeling and design of computer-
based systems in a way that 
demonstrates comprehension of the 
tradeoffs involved in design choices 
 

This class will use a significant amount of mathematics and 
sophisticated algorithms for implementing console games. Physics, 
collision detection, and AI algorithms, particularly for console 
applications, rely on good implementations that balance memory usage 
and speed. Since memory is limited on consoles, and there is little 
memory management support, memory/speed tradeoffs are important. 
 
In addition, students will study the tradeoffs in memory, processing 
power, and assets storage on different console device, the Zune and 
Xbox 360. While maintaining a similar programming model, these 
devices have vastly different performance that directly affects the 
games that can be run on these devices.  
 

(k) An ability to apply design and 
development principles in the 
construction of software systems of 
varying complexity 

Students will need to develop a variety of games, from relatively 
simple ones for homework assignments, to complex ones for projects. 
Applying principles of object-oriented design, as well as other 
techniques, will be important to complete the projects. 
 

 
XNA  and  Visual  Studio 
 

One of the great benefits about programming 
the Zune is XNA. As we mentioned earlier, XNA 
is an excellent SDK that provides a very rich set 
of objects for game development. XNA covers 
everything from graphics support (including 
shaders), to content pipelines, to network 
support. Since all our courses uses XNA, code 
can be reused (if applicable) on the Zune from 
the 2D game class. More importantly, however, 
is  that  art and  music  assets can be reused.  This  

 
greatly reduces development time. 

 
All development work with XNA is done with 

Visual Studio 2008 (VS 8). VS 8 is a powerful 
integrated development environment that allows 
projects to be deployed and debugged within it. 
This is very useful, as students can prototype 
games on their Windows machines, if they wish, 
and then deploy the same code directly to the 
Zune. Thus, many of the problems with building 
and deploying to an embedded system are  



COMPUTERS IN EDUCATION JOURNAL 11 

avoided—after all, the Zune acts as an embedded 
system during the development cycle. 

 
We have experience developing games on 

various commercial consoles, and we believe 
XNA/VS 8 is one of the best to use for 
undergraduate class purposes. The 
documentation is very good, the compilers and 
debuggers work well, the SDK is excellent, and 
there are many “starter kit” code examples from 
which to build. 

 
Microsoft makes both XNA and VS 8, along 

with documentation, available for free at the 
“XNA Creator’s Club” site.[5] Best of all, no 
special licensing is needed. 

 
XNA  Networking 
 

One of the advantages of XNA is that it 
provides a networking model that is specialized 
for gaming. Students can work directly with 
objects that represent the network, players local 
on a machine, and players remote on networked 
machines. Thus, they can operate on a much 
higher level than working directly with TCP/IP 
or UDP sockets.  

 
For example, establishment of and teardown of 

a network can be considerable work. By 
establishing a network, we mean creating a 
connection to the network (e.g., a sockets 
interface) and then going out to find machines 
that have players who want to participate in a 
game. The later step of this process is difficult to 
do. XNA provides simple functions to establish 
the network. Similarly, forming packets and 
sending them can be an onerous task. XNA 
provides high-level support for this as well. XNA 
also provide three quality of service levels, 
ranging from unreliable, fast to reliable, slow. 

 
XNA allows a game designer to easily simulate 

different network properties, such as latency and 
packet loss. An important part of the console 
class is learning network programming, so a 
simple way to adjust properties is a critical 
pedagogical tool, since students can easy see the 
effects of long latency or high packet loss. This 

aids in teaching “smoothing” and distributing 
computation load among networked machines. 

 
Student  Evaluation 

 
When first presented with the Zunes students 

are intrigued, since they are nice pieces of 
hardware, but skeptical about gaming on them. 
After all, they spent nearly a year struggling to 
get more powerful laptops to do what they want. 
In addition, the interface on the Zune seems too 
simple: single thumbstick, a few buttons and a 
small screen. After developing games with 
them; however, most students like the platform.   

 
In the past two terms, student evaluations of 

the console course show the following things: 
 
• The first time we used the Zunes, the 

student mostly enjoyed programming with 
them. This class made a set of novel and 
sophisticated games, exploiting the 
capabilities of the device. 

 
• The second time we used the Zunes, the 

students were mixed in their impressions. 
Some students like the Zune, while others 
were not happy with it. Those who did not 
like it complained of small screen size and 
some problems in getting the networking 
to work reliability. 

 
We offer two additional anecdotal 

observations about the Zune: 
 
• In both class offerings, a number of 

students bought own Zunes for further 
development after the class ended. (The 
CS department supplies students with 
Zunes for the class.)  

 
• In our senior project class, a group of 

students decided to use the Zune for their 
project. The project is a tour of campus, 
which uses many of the principles they 
learned from making a pervasive game. 
This group is using the HD Zune and have 
high praise for it. 

 



12  COMPUTERS IN EDUCATION JOURNAL 
 

 Summary 
 

The combination of the Zune with XNA and 
Visual Studio makes an excellent platform on 
which to teach mobile and pervasive gaming. 
Students are able to create impressive games, as 
well as learn the principles of networked and 
multiplayer gaming. The device fits well with 
our course objectives. 

 
While our students use the Zune after a year of 

classes, it is reasonable to expect junior or 
senior students to build games with the Zune as 
their first game programming experience. These 
students should be familiar with object oriented 
programming and using SDKs, preferably the 
Microsoft .NET SDK.  

 
The Zune makes a great platform for any 

project where a lightweight mobile, networked 
computing platform is desired. The applications 
do not need to be games. As we mentioned 
earlier, a group of students is using the Zune to 
create a campus tour.  

 
Finally, the Zune is cost effective. In a small 

school like ours, where we are required to 
provide all computing hardware and software 
for our students, the Zune is the only platform 
we could use.  

 
Acknowledgements 

 
We would like to acknowledge Grove City 

College’s Swezey research fund for providing 
equipment and student research stipend support 
to portions of this work. In addition, we 
appreciate the work done by Justin Kabonick and 
Adam Kaufman on parts of this work, and the 
Comp 447 classes from 2008 and 2009. 
 

Bibliography 
 
1. Soh, Jason O.B. and Tan, Bernard C.Y. 

Mobile gaming. Communications of the 
ACM. March 2008, Vol. 51, 3. 

 

2. Sung, Kelvin. Computer games and 
traditional CS courses. Communications of 
the ACM. December 2008, Vol. 52, 12. 

 
3. Engaging students through mobile game 

development. Kurkovsky, Stan. 
Chattanooga, TN : ACM, 2009. Proceedings 
of the 40th ACM technical symposium on 
Computer science education. 

 
4. Microsoft Corporation. Zune. [Online] 

http://www.zune.net/en-US/. 
 
5. Microsoft Corporation. XNA Creators Club. 

[Online] http://creators.xna.com/en-US. 
 
6. User case study and network evolution in 

the mobile phone sector (a study on current 
mobile phone applications). Fritsch, Tobias, 
Ritter, Hartmut and Schiller, Jochen. 
Hollywood, CA : ACM, 2006. Proceedings 
of the 2006 ACM SIGCHI international 
conference on Advances in computer 
entertainment technology. 

 
7. From 2D to consoles: A three-semester 

computer game development curriculum. 
Birmingham, William P and Adams, David. 
Honolulu : ASEE, 2007. ASEE Annual 
Conference. 

 
8, Montola, Markus, Stenros, Jaakko and 

Waern, Annika. Theory and design 
pervasive games: experiences on the 
boundary between life and play. Burlington, 
MA : Morgan Kaufman, 2009. 

 
Biographical  Information 

 
Dr. Birmingham is the chair of the Computer 

Science Department at Grove City College.  
Before coming to Grove City College, he was a 
tenured Associate Professor in the EECS 
Department at the University of Michigan, Ann 
Arbor.  His research interests are in AI, computer 
gaming, mobile computing and communications, 
and computer-science pedagogy.   He received his 
Ph.D., M.S., and B.S. all from Carnegie Mellon 
University. 
 


	Introduction
	The  Games  Classes
	XNA  and  Visual  Studio
	Student  Evaluation
	 Summary
	Acknowledgements
	Bibliography

