
COMPUTERS IN EDUCATION JOURNAL, VOLUME 10, ISSUE 3, September 2019 1

An Integrated Framework for Learning Fundamentals
in Computer Networks

Qian Liu
Math & Computer Science Department

Rhode Island College
Providence, RI 02908

qliu@ric.edu

Abstract—Fundamentals in Computer Networks are essential

to one’s deep understanding of network internals. Among those
networking fundamentals, TCP (Transmission Control Protocol)
related mechanisms and techniques are important elements not
only because it is widely used in Internet, but also because its
design principles have significant effect on the design of other
network protocols. In general, network simulators and/or
animations are used in Computer Networks courses to illustrate
TCP along with other fundamentals, however, those approaches
do not provide ways for students to delve into TCP core
techniques. In this paper, we introduce an integrated framework
for students to explore, practice, and learn TCP fundamentals in
detail. It can interact with students, direct them in each step
during their learning process, and allow them to implement
protocol functionalities or to adjust existing ones as needed. It
creates a personalized learning environment in which students can
learn networking fundamentals at their own pace.

Keywords—Computer Networks, TCP, Network Simulator,
Personalized Learning

I. INTRODUCTION
Networking fundamentals are building blocks of modern

networks, and a strong foundation of those basics is very
important to student success and to prepare them for advanced
skills. Among those fundamentals, TCP (Transmission Control
Protocol) related techniques and mechanisms are core elements
not only because numerous applications in today’s Internet rely
on it, but also because its design principles have significant
effect on the design of other networks. In networking education,
TCP fundamentals, especially error control, flow control,
congestion control, and connection management, are essential
topics in a typical, introductory networking course although
there are often differences in the teaching order or covered depth
[1].

TCP guarantees reliable data delivery on top of an unreliable
transmission service by using error control. Several techniques,
such as packet sequence number, acknowledgement, and
retransmission timer are combined to provide reliability, to
calculate network measurements such as latency and round-trip-
time, and to detect problems such as packet loss, out-of-order,
or duplicated packets. Equipped with flow control and
congestion control mechanisms, TCP can also prevent a fast
sender from overwhelming a slow receiver in order to reduce the
need for data retransmission, thus forming a complete

framework that not only provides reliability, but also controls
end-to-end connections and nodes’ behaviors. Many other
networks use TCP design principles as basis to build their own
transport protocols. For instance, similar techniques in TCP
error control, flow control, and congestion control are used in
high performance networks such as InfiniBand [2], RoCE
(RDMA over Converged Ethernet) [3], and are also used to
implement mechanisms such as reliable multicast [4-5].
Therefore, these fundamentals are not only essential parts in a
networking course, but also important to prepare students for
advanced skills.

In this article, we introduce an integrated framework that can
help students comprehend networking fundamentals, especially
TCP error control, flow control, congestion control, connection
management, and state transition. Compared to the existing
simulators and learning models, our framework has the
following four advantages:

• The framework creates a personalized learning
environment for students. They have freedom to
configure the framework as needed and learn things at
their own pace.

• The framework interacts with students to help them
learn essential techniques and mechanisms. It guides
students in each step and provides feedback and hints
when they make mistakes, thus building a self-directed
and self-explanatory learning environment.

• The framework is based on the socket model and
allows students to implement protocol functionalities
or to adjust existing ones in it. Students have
opportunities to consider more protocol design and
implementation details, to do more hands-on practice
and to gain better program design skills.

• The framework can be running in two modes: GUI
(Graphic User Interface) mode and command line
mode, which have different implementations and
design principles. Students can work in either or both
modes based on their needs.

 The rest of this paper is organized as follows. Section II
discusses related work. Section III introduces the design and
deployment of our framework. Section IV discusses the
effectiveness of the framework and student results. Section V
draws the conclusion.

2 COMPUTERS IN EDUCATION JOURNAL, VOLUME 10, ISSUE 3, September 2019

II. RELATED WORK
Network simulators are usually introduced into networking

courses to illustrate protocol behaviors and to compare network
performance in various scenarios without requiring dedicated
hardware. Some [6-9] are using simulation as animation to
visualize network algorithms or fundamentals to students. One
big concern about those approaches is that they usually illustrate
network concepts in an ideal scenario. In actual network
circumstances, however, network events are not well-organized,
and do not occur in the same order as in the simulations.
Therefore, those animations are not able to equip students with
the ability of analyzing abstract concepts on their own [10], and
students’ understanding of networking fundamentals may stay
at the theoretical level.

Simulators like OMNeT++ [11] and NS-3 [12] are open-
source tools that provide abstractions for network functionalities
such as sending, receiving, queuing, forwarding, etc. They
provide several built-in simulation examples so that students in
introductory networking courses can simply run those examples
and then observe the simulation output to experience network
behaviors without the need to understand simulator internals.
Students can also adjust protocol attributes, such as MSS
(Maximum Segment Size), congestion control algorithms
(Tahoe, Reno, etc.), or packet bit error rate in those built-in
examples to compare performance among various
configurations. For instance, it will be convenient to compare
the changes in cwnd (congestion window) among different
congestion control algorithms in those simulators. However, if
students need to design experiments with specific traffic
patterns, network topologies, or to collect statistics that are not
currently recorded by existing experiments, they must
implement these features by following the internal libraries in
OMNeT++ or NS-3. This requires one to have a thorough
understanding on the simulator internals, for instance, the
representation of network elements (end node, switch, router),
the logic and procedure used in the simulated sending and
receiving, along with many simulator-private structures and
interfaces which are not associated with network fundamentals
nor with general socket library, therefore, it will create a steep
learning curve that goes beyond the course requirements and
puts extra burden on students in introductory networking
courses. In general, these simulators are widely used in new
network model and/or protocol development [13-16].

GNS3 (Graphical Network Simulator 3) [17] is a network
emulator that virtualizes commercial network devices
(especially Cisco routers) and allows one to configure, test, and
troubleshoot networks in a virtual environment mirroring the
actual network topology without requiring dedicated hardware.
GNS3 has no relationships with NS-3 discussed previously
though it is “Graphical NS3”. One can drag and drop network
elements (hosts, switches, and routers) in GNS3 GUI to build
and manage networks easily. Students who are preparing for
CCNA (Cisco Certified Network Associate) certificate will gain
the required in-depth knowledge [18] by using GNS3. It is also
a great help for students to go over subnet fundamentals and
management especially routing and switching topics because all
network elements need to be configured manually in GNS3. For
instance, one needs to set up IP and gateway addresses for all
(virtual) hosts in GNS3, and to configure all routers by using

actual router config commands to activate network connectivity
among subnets (or to deny specific traffic between hosts). In
addition, GNS3 allows one to capture traffic flows on every link
in its virtual network, and in the real world however, it is not
possible to see how data are transferred in external networks.
This feature gives students opportunity to examine and study
how packets are transferred among different subnets and how
packet headers are altered from source to destination. However,
GNS3 does not generate application layer traffic such as HTTP,
FTP, nor does it provide ways for students to adjust protocol
behavior or traffic patterns so that students cannot use it to
explore details such as TCP error control, flow control, or
congestion control.

Packet Tracer simulator [19] is designed by Cisco, it has
similar drag-and-drop GUI and provides similar functionalities
like GNS3. One big difference between GNS3 and Packet
Tracer is that Packet Tracer supports more application layer
protocols such as HTTP, FTP, SMTP, etc. Besides, it visualizes
traffic flows on every link in animation so that users can follow
them step by step to learn protocol behaviors. However, as a
simulator that implements protocol behaviors internally and
only animates the procedure of data communications, it conceals
too much of layer details and their relations to upper layers [20].
Although one can keep track of recorded packets and make
connections among the packet sequence numbers and ACK
numbers to follow the workflow in TCP data transfer, students
cannot introduce any user-defined error models to learn how
TCP recovers data in a lossy environment to guarantee
reliability. In addition, as a “packet visualizer” that only records
packet details, Packet Tracer does not interact with students to
test their understanding, nor does it simulate essential
mechanisms such as flow control or congestion control,
therefore, it is not appropriate to study and investigate those TCP
essentials in it.

OPNET simulator [21] (OPNET IT Guru) provides a virtual
network environment for modeling, analyzing, comparing, and
predicting performance of IT infrastructures. Like GNS3 and
Packet Tracer, one can drag-and-drop network elements in
OPNET GUI and adjust traffic attributes such as traffic type
(FTP, HTTP), repeatability, start/stop time, and data size in it.
In addition, OPNET makes it easier to collect a great deal of
network statistics, ranging from global statistics such as
throughput and latency, to protocol level statistics such as cwnd.
However, it does not illustrate traffic flows, nor does it provide
ways to define specific network scenarios. Students cannot use
it to investigate protocol details such as how error control
handles various errors in data transfer to ensure reliability.

Besides network simulators, several learning models [20,
22-26] have been proposed to help students comprehend
networking essentials in different ways while having
programming requirements in their learning processes.
However, those models either arrange students to work in a
specific framework with pre-defined, model-private interfaces,
or arrange students to deal with lower layer (Link Layer)
implementations or driver implementations, which primarily
deal with OS kernel internals such as driver callbacks, system
calls and interruptions. These will put extra burden on students
in introductory networking courses, and they cannot fully focus
on the learning of network fundamentals. In our framework,

Q. LIU: An Integrated Framework for Learning Fundamentals in Computer Networks 3

students are not limited in any specific context, and they have
more opportunities to examine protocol/mechanism design
details. In addition, students are engaged in the design of our
framework and in the control of its behaviors. They can specify
customized scenarios and enable/disable specific functionalities
to follow network variations step by step and to learn things at
their own pace.

III. DESIGN AND DEPLOYMENT
This section discusses the design details of our learning

framework and its deployment in introductory networking
classes. Our learning framework builds a Programmable,
Interactive Environment (PIE) for practicing and investigating
networking fundamentals, especially TCP essentials such as
error control, flow control, congestion control, connection
management, and state transitions. It consists of three modules:
demonstration, interaction, and implementation. The
demonstration module illustrates the details of TCP error control
by using actual network traffic. It allows students to go beyond
the predicted scenarios in common simulators, which typically
conceal too much of the underlying techniques and do not
provide ways for students to investigate error control techniques.
PIE allows students to introduce different error models step by
step to investigate how TCP detects errors and recovers data in
various scenarios so that students can learn those underlying
techniques at their own pace, thus creating a personalized
learning environment.

The interaction module focuses on packet details, especially
the sequence number, ACK number, and packet flags (PSH,
ACK, SYN, etc.), which are crucial elements in TCP data
transfer. This module is used to test students’ understanding of
how TCP relies on those header fields to detect errors and
perform retransmissions. During interactions, students must
provide the correct values of those header fields at each step in
a complete TCP communication: from connection setup to
connection close, and the module will provide feedback/hints in
case there is any error in student response. In addition, because
the state transition topic is usually discussed theoretically
without any experiment or practice in networking classes, this
module integrates TCP states in each step to help students gain
in-depth knowledge of those abstract concepts.

The implementation module focuses on flow control and
congestion control mechanisms, which are not fully
implemented (the “TBD” component in Figure 1 which will be
discussed next). Students should design and implement them in
PIE based on those mechanism principles. In this module,
students must: 1) make sure that the sender will not overflow the
receiver’s limited receive window; 2) record and adjust the cwnd
appropriately according to different network events.

PIE can be running in two modes: GUI mode and command
line (cmd) mode. The architecture of the GUI-PIE is depicted in
Figure 1 (the internal components will be discussed in the
following subsections). GUI-PIE is built on top of JDK (Java
Development Kit) and uses the Java Socket to generate actual
network traffic. Therefore, unlike existing learning models that
arrange students to program in specific frameworks or follow
specific interfaces, no extra burden is introduced to students

when they implement new functionalities or adjust existing ones
in PIE. One can run the GUI-PIE in either C/S mode (on two
hosts, one host is the server, sending side, and the other is client,
receiving side) or standalone mode. The GUI-PIE does not rely
on any specific OS features, and is an OS independent, portable
tool for PCs (Windows, Linux, and Mac).

Figure 1: The Architecture of GUI-PIE

In our framework, the GUI-PIE is separated from the cmd-
PIE, which is running on Linux terminal only. Like GUI-PIE,
the cmd-PIE can also be running in C/S mode or standalone
mode. Unlike GUI-PIE, the cmd-PIE is written entirely in C
programming language and uses the POSIX socket. The reason
we provide the cmd-PIE is that students can realize the
differences among various socket interfaces, especially the
differences in recv operation between the POSIX socket and the
Java socket and stream classes from application designers’
perspective. Students can work in one mode or both to learn
network essentials depending on their needs.

A. Demonstration Module
This module focuses on the TCP error control mechanism,

especially the acknowledgement and retransmission techniques
in it. We do not explicitly illustrate checksum technique used in
error control because the transmission errors (detected by
checksum) can be covered by the error model (discussed next)
we introduced in PIE. The demonstration module uses detailed
illustrations to help students obtain a deep understanding of how
packets are delivered reliably in lossy environments, for
instance, how does receiver detect packet loss, how does sender
realize which packet it sent previously has problem, and when a
retransmission is necessary.

Students first specify the total size of the sending data and
the size of MTU (Max Transmission Unit), then the sender
(send/recv component in Figure 1) starts sending data packets to
the receiver. The event recorder component (shown in Figure 1)
records all network events, such as a reception of a packet
(data/ACK) and all error cases (discussed next) on both sides.
Then the visualizer component displays those event logs in the
GUI-PIE (in cmd-PIE, they will be displayed as live traffic logs).
The send/recv component is built by using TCP socket, so that
the PIE, which resides in the application layer, will not observe
any error situations, for instance, packet loss or RTO
(Retransmission TimeOut). In order to provide students with
error models in which they can investigate how TCP reacts to
various network scenarios to guarantee reliability, we introduce
the following two mechanisms:

4 COMPUTERS IN EDUCATION JOURNAL, VOLUME 10, ISSUE 3, September 2019

1) Explcite ACK: after receiving a data packet in PIE, an
explicit ACK packet should be constructed and sent to
acknowledge the reception of a data packet. It should convey
the following simulated information: sequence number, ACK
number, and necessary flags, as shown in Figure 2, which is
also the data packet format used in PIE.

Figure 2: Packet Format in PIE

2) Random packet discarder component (as shown in
Figure 1): it is introduced to simulate packet loss, depending on
a configurable “loss rate” parameter. That is, after receiving a
data packet, the receiver runs the random packet discarder to
decide whether the current packet should be discarded
“manually” as if it was not received previously. On the sender
side, after receiving an ACK, it runs the discarder to decide
whether to discard the explicit ACK manually. Therefore,
unlike the existing simulators/animations that generate
predicted traffic patterns, the random packet discarder in PIE
will generate various error scenarios for students to investigate
TCP error control techniques in detail. In addition, the discarder
can also be configured to build predicted error scenarios.
Students can specify a list of packets in the discarder to only
discard those packets, thus building a predicted environment for
beginners to learn as needed.

The reasons we use the combination of TCP socket and a
random packet discarder, instead of implementing those
features by using UDP, are:

1) students will have control on the introduced error models,
and they can simply adjust the value of the “loss rate” attribute
to compare and examine various situations;

2) it will be easier to calculate the goodput measurement
since the number of delivered packets will be known for sure;

3) this simulation model is extensible and will match
students’ learning curve if built on TCP. For instance, when
students start with the basic concepts in data transfer, the packet
discarder can be disabled so that students can get familiar with
the overall procedure in the ideal situation; then, the discarder
can be introduced to receiver side only so that students can focus
on how sender detects packet loss and deals with retransmission
based on the retransmission timer or fast retransmission
technique; finally, the discarder can be introduced to sender to
simulate lost ACK scenarios. This step-by-step process creates
a personalized learning environment in which students can
learn essential error control techniques at their own pace.

 As stated before, all network events, including the
“simulated” packet loss, duplicated ACKs, and retransmissions,
will be recorded and visualized. Figure 3, for instance, displays
events recorded on sender side in a network environment in
which the discarder is introduced to receiver only. Each event
has relevant description and is self-explained. Note that the

discarder can be introduced to both sides and packets will be
discarded randomly, therefore, each time the demonstration
module runs in a “new” lossy environment and will generate a
new set of events accordingly.

Figure 3: an Example of Recorded Events in the Demonstration Module

 It seems that the demonstration module is similar to the
packet sniffing tools such as Wireshark analyzer, which captures
packet payload and packet header fields such as sequence
numbers, packet lengths, and packet types. However, in the real
world, it is not easy to let network discard a specific packet in
TCP to customize a lossy environment, therefore, tools like
Wireshark will not illustrate the gaps in sequence numbers
and/or duplicated ACKs. But in the demonstration module,
students can easily specify different lossy environments and go
through those events to practice the error control techniques
such as how receiver detects packet loss, how sender becomes
aware of a problematic packet, and when a retransmission is
necessary.

B. Interaction Module
 This module provides an event-driven interaction for
students to learn and practice the mechanisms used in TCP error
control to detect error situations such as lost packets, out-of-
order packets, duplicated packets, etc. It also provides students
with practice in TCP state transition. The interaction module
simulates the entire data transfer procedure (from connection
setup to connection close) and records all network events, like
the demonstration module. Then it uses those events one at a
time to interact with students and to test their understanding of
how packet header fields are used to acknowledge data reception
and to detect errors. First, students choose one side (data packet
sending side or receiving side) to begin the interaction. Because
different sides have different events, students can get involved
in every detail of error control. In each step, students respond to
the current event and construct a packet with appropriate values
for the packet sequence number, the ACK number, and the
packet flag (SYN, ACK, FIN, etc.) in order to move to the next
event. Figure 4 illustrates the situation when one host receives a
data packet with sequence number 1, ACK number 1, and
payload length 1460 bytes. Students should construct an explicit
ACK packet with the correct ACK number, sequence number,
and choose the appropriate packet flag (ACK) to acknowledge
the reception. Then, it moves to the next network event, as
shown in Figure 5, the host receives a data packet with sequence

Q. LIU: An Integrated Framework for Learning Fundamentals in Computer Networks 5

number 2921, students can then deduce that a packet may get
lost due to the gap in the sequence numbers, then students should
provide the appropriate ACK number for the current event.

Figure 4: an Example of Constructing an explicit ACK packet

Figure 5: an Example of Constructing an explicit ACK packet when gap exists
 The interaction module provides a self-directive and self-
explanatory interface. If any value students provide is not
correct, the module reports error information and hints on how
to fix it. For instance, if one mistakenly provides ACK number
4381 in the step shown in Figure 5, then the interactive module
will report this unaccepted ACK error, in Figure 6, and go back
to the previous event (Figure 5), waiting for the correct input
values to move to the next event.

Figure 6: Hints for Students if any Value is not correct

 The random packet discarder is also used in this interaction
module. Based on their learning needs and individual progress,
students can introduce the discarder on either side step by step
to investigate and practice the variations in protocol behaviors
because each time PIE runs, it generates a different set of
network events. Another way to use the discarder, as discussed
previously, is that students can specify a list of discarded packets
(discussed in the demonstration module) to build a predictable
environment that only discards “pre-defined” packets, thus
creating a personalized learning environment. Initially, the
discarder is disabled so that no packets get dropped. In this

“ideal” scenario, beginners can go over the basic work flow
between data packets and ACK packets. Then, the discarder can
be introduced on the receiver side only to simulate data packet
loss, so that gaps between data packets will appear (for instance,
Figure 4 and Figure 5). In this case, students, if working on
receiver side, need to acknowledge data packets with
“appropriate” ACK numbers. If they are working on sender side,
they need to deal with events such as duplicated ACKs and
retransmission scenarios. Next, the discarder can be introduced
to the sender side to simulate ACK loss scenarios, which will
generate more variations. Therefore, instead of observing
protocol behaviors, students have opportunities to delve into the
details of error control systematically in this module, and they
can proceed from simple cases to complex scenarios in
accordance with the structure of their knowledge. This helps
students obtain a deep understanding of how TCP relies on
packet header information and timer to guarantee reliability.

Figure 7: an Example of TCP State Transition

 In addition, the interaction module integrates TCP state
transition procedure, which is usually discussed theoretically in
classes without any experiment or practice, so that students are
generally not aware of how important it is to TCP
communication. Similar transition ideas are applied in other
networks, for instance in the RDMA QP (Queue Pair) transition
[2]. In each of the interaction steps, especially in the connection
setup and connection close, students not only need to provide
appropriate values for sequence number, ACK number, and flag,
but also need to change the current state, if necessary, to the next
appropriate one. For instance, upon the reception of a SYN
packet, as shown in Figure 7, one should construct a SYN+ACK
packet to accept the connection request and move local state to
SYN_RCVD.

C. Implementation Module
Students should implement flow control and congestion

control mechanisms in this module. In general, these two topics
are discussed without hands-on practice in classes, usually
diagrams or animations are used to illustrate how they work. In
simulators like OMNeT++ or OPNET, rwnd (receive window)
and cwnd (congestion window) statistics are collected
automatically so that users can compare how these windows
change over time in various configurations. However, those
tools only visualize the window changes and do not illustrate the
internal principles. It will be better for students to implement
these mechanisms in a simple way to understand how to adjust
those windows in response to various scenarios.

6 COMPUTERS IN EDUCATION JOURNAL, VOLUME 10, ISSUE 3, September 2019

In the “TBD” component (Figure 1), part of the sending and
receiving structure is implemented. Students should continue to
use socket and the packet format shown in Figure 2 (a new filed
“window” should be added if it is flow control implementation)
to implement flow control and congestion control separately.

In the flow control implementation, sender has knowledge
of the initial rwnd from a pre-defined, configurable variable
“window size” (N bytes), and it keeps sending several packets
with random size (1 ~ N-1 bytes) of data (students can choose to
always send fixed length of data) as long as the window size on
the sender side is not 0. If it is the cmd-PIE framework, a simple-
TLV (Type-Length-Value) protocol we modified for this
framework is used. That is, before sending a data packet with
size M bytes (M < N), sender should send a (control) packet first
that contains the information of M to indicate the size of the data
packet sender goes to send next, so that the receiver
(implemented in C program) can call recv function with
appropriate buffer size to hold the next data packet in order to
preserve packet boundary for easy management.

Figure 8: an rwnd Scenario

On data packet receiver side, it randomly decides whether to
consume zero, one, or X data packets (X is less than the number
of packets received but not consumed), and then sends an
explicit ACK packet with its current window size integrated. For
instance, in the scenario shown in Figure 8, students must make
sure that sender should not send any data packets upon reception
of the explicit ACK.

The partially finished TBD component is implemented in
single thread mode. We encourage students to implement flow
control in multi-thread mode (for instance in Figure 9) to handle
synchronization in multi-thread environment, in which more
situations should be considered. This will help students fully
understand the underlying flow control mechanism and gain
better programming skills. In flow control implementation, the
random packet discarder is not used.

Figure 9: one Possible Flow Control Model in Multi-thread Mode

In congestion control implementation, the sliding window
size discussed in the demonstration module should start from 1
(initial slow start window size) MSS, and it should be adjusted
appropriately based on different network events according to
congestion control algorithm students implement. We suggest
students to use random packet discarder (with low drop rate) on
the receiver side only to discard data packets randomly. Sender,
in this case, does not discard any explicit ACKs in order to focus
on the events of packet loss, duplicate ACKs, and RTO.

Students should collect statistics such as the changes in
rwnd, cwnd, and the number of bytes consumed each time on
receiver side in their implementations. They should also adjust
attributes such as window size, traffic pattern (e.g. always send
fixed length of data), and consumption style (e.g. consume a
packet after a fixed small delay) to simulate various scenarios
and compare throughput among those configurations. Based on
the data they collected, students should then diagram and
investigate the entire procedure of how the changes in those
attributes impact receive window and congestion window.

IV. RESULTS
We use the PIE learning framework in an introductory

networking course at undergraduate level with the objective of
helping students comprehend the core techniques in the
transport layer and engaging them in effective learning. The
framework lets students analyze protocol essentials in detail,
construct models, and evaluate their ideas by experimenting and
testing with actual network traffic. We expect students to learn
what went wrong and how to fix them in the procedure and to
develop higher-order thinking skills [27] that can transit them
from “I can follow rules to describe a procedure, but I do not
know how to connect them together” to “I can explain why
things happened in this way, and I can apply my ideas and
compare different designs”.

TABLE I: Test Topics and Objectives
 Topics Objective (test how well students

understand…)

test 1
acknowledgement
and retransmission
mechanisms

how TCP detects packet loss and
ensures reliability in various
scenarios

test 2
connection setup
and close, state
transitions

1) when a state is moved to another

2) how state transition reacts to
header flags

3) the changes in header fields during
a complete communication

4) the information sender and
receiver exchange during connection
setup

test 3
flow control (fc),
sliding window,
receive window

1) how to adjust sliding window

2) how fc is used to pause a sender

test 4
congestion control

(cc)

1) how to adjust cwnd according to
different events

2) how cc impacts throughput

Q. LIU: An Integrated Framework for Learning Fundamentals in Computer Networks 7

 For each networking technique illustrated in our framework,
we give two tests in a stepwise learning process. Table I shows
the test topics and objectives. We first take a test after lecture
and practice in network simulators and/or animations,
depending on the topics we discussed, then, students work in the
framework, and after that, we give another test on the same topic
but with more advanced questions. Finally, we grade these tests
and review student progress. Figure 10 shows the comparison of
their grades before and after participating in the learning
framework.

Figure 10: Student Assessment before and after Participating in each test

In error control, which deals with techniques such as
sequence number, ACK, and retransmission, students gain
significant improvements after learning in the framework
because the techniques TCP uses to guarantee reliability are too
abstract when they were discussed in classes by using diagrams
or animation examples. Although existing simulators allow
users to configure parameters such as packet loss rate to specify
a lossy environment, how data are delivered reliably is still
transparent to students. Our learning framework not only
provides multiple ways for students to investigate core
techniques in detail, but also creates a personalized learning
environment in which they can learn things at their own pace.
Similar improvement occurs in flow control, connection
management, and state transition activities. In congestion
control activity, students already did well in the first round
because their understanding of the fundamentals is improved in
the previous activities.
TABLE II: Percentage of Students who made Common Errors before and after

learning in PIE
Common Errors Before After

ACK number does not reflect expected seq.no 29% 7%

incorrect seq.no 12% 0%

incorrect ACK number in case of packet loss 31% 3%

does not consider cumulative ACK 22% 3%

move sliding window incorrectly 26% 10%

sender overflows receiver’s window 19% 6%

 Table II summarizes and lists the percentage of students who
makes common errors before and after their learning in PIE. It
indicates that students have shown remarkable progress in all
aspects. This confirms that students have gained better

comprehension of those core techniques, and have developed
well-organized, structured knowledge after their learning
activities in the framework.

Figure 11: Student Evaluations on PIE

 Students were asked to evaluate the framework from several
aspects. Figure 11 shows their overall evaluation (1 means
“strongly disagree”; 5 means “strongly agree”). They have
identified that the interaction module is their most favorite part,
which directs them step by step to complete a data transfer
procedure, especially when they make mistakes the module
provides hints to help them learn header details and state
transition. Figure 12 lists the time they spent on the
implementation part. Most students can finish the coding
activity within 10 days, and based on our observation, this
programming project does not cause any time conflict with other
networking assignments handed out at the same time. We plan
to let students implement more details in flow control and
congestion control in the future.

Figure 12: Time Students Spend on Mechanism Implementation

V. CONCLUSION
This paper introduces an educational framework for

effective learning of TCP essentials such as error control, flow
control, congestion control, connection management, and state
transitions. A good understanding of these core techniques not
only helps students comprehend the architecture and internal
principles of network communication, but also prepares students
for advanced topics and skills because these techniques have
significant effect on the design of other network protocols and
mechanisms. There are three modules in our framework:
demonstration, interaction, and implementation. The
demonstration module illustrates the details of error control by

8 COMPUTERS IN EDUCATION JOURNAL, VOLUME 10, ISSUE 3, September 2019

using actual network traffic and allows students to investigate
how TCP detects errors and recovers data to guarantee reliability
in configurable lossy environments. The interaction module
focuses on the learning and practicing of packet header details
and state transitions. Its self-directive GUI interacts with
students through entire TCP communication procedures: from
connection setup, data transfer, to connection close. In each
interactive step, students need to construct a packet with
appropriate values in the header fields and move the current TCP
state to the next appropriate one. The interface can detect errors
in student response and provide hints on how to fix them. In the
implementation module, students use socket programming
model to implement TCP flow control and congestion control.
This program project will help students obtain a deep
understanding of when and how to adjust transfer windows
appropriately in response to various network events.

One important feature provided by our framework is that
students can learn network fundamentals at their own pace. The
framework uses actual network traffic in user-defined lossy
environments, it allows students to introduce various error
models step by step to investigate how TCP reacts to different
situations. For instance, students can start from the ideal
environment in which the lossy model is disabled in order to get
familiar with the basic work flow. Then, various lossy models
can be introduced to the receiver side only in order to focus on
the details of how sender detects packet loss and when a
retransmission is necessary. Next, lossy models can be activated
on sender side to generate more network events, thus creating a
personalized learning environment in which students can
configure the framework as needed and learn things at their own
pace.

 According to our observation, this framework can be used
not only in classrooms to demonstrate essential mechanisms in
various scenarios, but also in labs or after class to provide
programming projects and hands-on practices to enhance
effective learning and encourage personalized learning.

REFERENCES
[1] J. Schönwälder, T. Friedman, A. Pras. Using Networks to Teach about

Networks (Report on Dagstuhl Seminar #17112). ACM SIGCOMM
Computer Communication Review. Vol 47.3, July 2017.

[2] InfiniBand Architecture Specification Volume 1, Release 1.3, InfiniBand
Trade Association Std., Mar. 2015. [Online]. Available:
https://infinibandta.org

[3] Supplement to InfiniBand Architecture Specification, Volume 1 Release
1.2.1 Annex A17: RoCE-v2, Sep. 2014. [Online]. Available:
https://infinibandta.org

[4] Q. Liu and R. D. Russell. IBRMP: A Reliable Multicast Protocol for
InfiniBand. In Proceedings of the 2014 IEEE 22nd Annual Symposium on
High-Performance Interconnects. Aug 2014.

[5] M. den Burger and T. Kielmann. Collective Receiver-Initiated Multicast
for Grid Applications. IEEE Transactions on Parallel and Distributed
Systems, Vol. 22, no. 2. Feb. 2011.

[6] E. Galip and H. Bulut. Implementing the Distributed Breadth First Search
Algorithm in OMNeT++ for Teaching and Learning Purpose. The Eurasia
Proceedings of Educational & Social Sciences. Vol 5. 2016.

[7] A. Fonseca, A. Camoes, and T. Vazao. Geographical routing
implementation in ns3. Proceedings of the 5th International ICST
Conference on Simulation Tools and Techniques. Mar 2012.

[8] J. Kurose, and K. Ross. Computer Networking: A Top-Down Approach
(7th edition). Pearson. May 2016.

[9] M. Holiday. Animation of computer networking concepts. Journal on
Educational Resources in Computing. Jun 2003.

[10] R. Chang. Teaching computer networking with the help of personal
computer networks. Proceedings of the 9th annual SIGCSE conference
on Innovation and technology in computer science education. Jun 2004.

[11] OMNeT++ Simulator. [Online]. Available: https://omnetpp.org
[12] NS-3 Network Simulator. [Online]. Available: https://www.nsnam.org
[13] Q. Liu, R. Russell, and E. Gran. Improvements to the InfiniBand

Congestion Control Mechanism. 2016 IEEE 24th Annual Symposium on
High-Performance Interconnects. Aug 2016.

[14] J. Jiang, Y. Li, S. Hong, A. Xu, and K. Wang. A Time-sensitive
Networking (TSN) Simulation Model Based on OMNET++. 2018 IEEE
International Conference on Mechatronics and Automation (ICMA). Aug
2018.

[15] N. Baldo, M. Requena-Esteso, J. Nunez-Martinez, M. Portoles-Comeras,
J. Nin-Guerrero, P. Dini, and J. Mangues-Bafalluy. Validation of the
IEEE 802.11 MAC model in the ns3 simulator using the EXTREME
testbed. Proceedings of the 3rd International ICST Conference on
Simulation Tools and Techniques. Mar 2010.

[16] G. Piro, N. Baldo, and M. Miozzo. An LTE module for the ns-3 network
simulator. Proceedings of the 4th International ICST Conference on
Simulation Tools and Techniques. Mar 2011.

[17] GNS3 Simulator. [Online]. Available: https://www.gns3.com
[18] R. Mohtasin, et. al. Development of a virtualized networking lab using

GNS3 and VMWARE workstation. In 2016 International Conference on
Wireless Communications, Signal Processing and Networking. Mar 2016.

[19] Cisco Packet Tracer. [Online]. Available:
https://www.netacad.com/courses/packet-tracer

[20] D. Feinberg. Teaching Simplified Network Protocols. In Proceedings of
the 41st ACM technical symposium on Computer science education. Mar
2010.

[21] OPNET Simulator. [Online]. Available:
https://www.riverbed.com/products/steelcentral/opnet.html

[22] B. Momeni, and M. Kharrazi. Improving a computer networks course
using the Partov simulation engine. IEEE Transactions on Education. Vol
55.3. Aug 2012.

[23] J. Pullen. Teaching network protocol concepts in an open-source
simulation environment. In Proceedings of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science
Education. Jul 2018.

[24] W. Zhu. Hands-on network programming projects in the cloud. In
Proceedings of the 46th ACM Technical Symposium on Computer Science
Education. Mar 2015.

[25] M. El-Kharashi, G. Darling, B. Marykuca, and G. C. Shoja.
Understanding and implementing computer network protocols through a
lab project. IEEE Transactions on Education. Vol 45.3. Aug 2002.

[26] K. Lee, J. Kim, and S. Moon. An educational networking framework for
full layer implementation and testing. In Proceedings of the 2014 ACM
conference on SIGCOMM. Aug 2014.

[27] L. W. Anderson, et. al. A taxonomy for learning and teaching and
assessing: A revision of Bloom's taxonomy of educational objectives.
Addison Wesley Longman, Inc, 2001.

Dr. Qian Liu is an Assistant Professor with
Mathematics and Computer Science department at
Rhode Island College, Providence, USA. Dr. Liu
received the Ph.D. degree in Computer Science
from the University of New Hampshire in 2016.
His research interests include computer networks,
operating system, simulation, and learning
technologies.

	I. Introduction
	II. Related work
	III. design and deployment
	A. Demonstration Module
	1) Explcite ACK: after receiving a data packet in PIE, an explicit ACK packet should be constructed and sent to acknowledge the reception of a data packet. It should convey the following simulated information: sequence number, ACK number, and necessar...
	2) Random packet discarder component (as shown in Figure 1): it is introduced to simulate packet loss, depending on a configurable “loss rate” parameter. That is, after receiving a data packet, the receiver runs the random packet discarder to decide w...

	B. Interaction Module
	C. Implementation Module

	IV. results
	V. conclusion
	References

