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Abstract—Fundamentals in Computer Networks are essential 

to one’s deep understanding of network internals. Among those 
networking fundamentals, TCP (Transmission Control Protocol) 
related mechanisms and techniques are important elements not 
only because it is widely used in Internet, but also because its 
design principles have significant effect on the design of other 
network protocols. In general, network simulators and/or 
animations are used in Computer Networks courses to illustrate 
TCP along with other fundamentals, however, those approaches 
do not provide ways for students to delve into TCP core 
techniques. In this paper, we introduce an integrated framework 
for students to explore, practice, and learn TCP fundamentals in 
detail. It can interact with students, direct them in each step 
during their learning process, and allow them to implement 
protocol functionalities or to adjust existing ones as needed. It 
creates a personalized learning environment in which students can 
learn networking fundamentals at their own pace. 

Keywords—Computer Networks, TCP, Network Simulator, 
Personalized Learning 

 

I. INTRODUCTION 
Networking fundamentals are building blocks of modern 

networks, and a strong foundation of those basics is very 
important to student success and to prepare them for advanced 
skills. Among those fundamentals, TCP (Transmission Control 
Protocol) related techniques and mechanisms are core elements 
not only because numerous applications in today’s Internet rely 
on it, but also because its design principles have significant 
effect on the design of other networks. In networking education, 
TCP fundamentals, especially error control, flow control, 
congestion control, and connection management, are essential 
topics in a typical, introductory networking course although 
there are often differences in the teaching order or covered depth 
[1]. 

TCP guarantees reliable data delivery on top of an unreliable 
transmission service by using error control. Several techniques, 
such as packet sequence number, acknowledgement, and 
retransmission timer are combined to provide reliability, to 
calculate network measurements such as latency and round-trip-
time, and to detect problems such as packet loss, out-of-order, 
or duplicated packets. Equipped with flow control and 
congestion control mechanisms, TCP can also prevent a fast 
sender from overwhelming a slow receiver in order to reduce the 
need for data retransmission, thus forming a complete 

framework that not only provides reliability, but also controls 
end-to-end connections and nodes’ behaviors. Many other 
networks use TCP design principles as basis to build their own 
transport protocols. For instance, similar techniques in TCP 
error control, flow control, and congestion control are used in 
high performance networks such as InfiniBand [2], RoCE 
(RDMA over Converged Ethernet) [3], and are also used to 
implement mechanisms such as reliable multicast [4-5]. 
Therefore, these fundamentals are not only essential parts in a 
networking course, but also important to prepare students for 
advanced skills. 

In this article, we introduce an integrated framework that can 
help students comprehend networking fundamentals, especially 
TCP error control, flow control, congestion control, connection 
management, and state transition. Compared to the existing 
simulators and learning models, our framework has the 
following four advantages: 

• The framework creates a personalized learning 
environment for students. They have freedom to 
configure the framework as needed and learn things at 
their own pace. 

• The framework interacts with students to help them 
learn essential techniques and mechanisms. It guides 
students in each step and provides feedback and hints 
when they make mistakes, thus building a self-directed 
and self-explanatory learning environment. 

• The framework is based on the socket model and 
allows students to implement protocol functionalities 
or to adjust existing ones in it. Students have 
opportunities to consider more protocol design and 
implementation details, to do more hands-on practice 
and to gain better program design skills. 

• The framework can be running in two modes: GUI 
(Graphic User Interface) mode and command line 
mode, which have different implementations and 
design principles. Students can work in either or both 
modes based on their needs. 

 The rest of this paper is organized as follows. Section II 
discusses related work. Section III introduces the design and 
deployment of our framework. Section IV discusses the 
effectiveness of the framework and student results. Section V 
draws the conclusion. 
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II. RELATED WORK 
Network simulators are usually introduced into networking 

courses to illustrate protocol behaviors and to compare network 
performance in various scenarios without requiring dedicated 
hardware. Some [6-9] are using simulation as animation to 
visualize network algorithms or fundamentals to students. One 
big concern about those approaches is that they usually illustrate 
network concepts in an ideal scenario. In actual network 
circumstances, however, network events are not well-organized, 
and do not occur in the same order as in the simulations. 
Therefore, those animations are not able to equip students with 
the ability of analyzing abstract concepts on their own [10], and 
students’ understanding of networking fundamentals may stay 
at the theoretical level. 

Simulators like OMNeT++ [11] and NS-3 [12] are open-
source tools that provide abstractions for network functionalities 
such as sending, receiving, queuing, forwarding, etc. They 
provide several built-in simulation examples so that students in 
introductory networking courses can simply run those examples 
and then observe the simulation output to experience network 
behaviors without the need to understand simulator internals. 
Students can also adjust protocol attributes, such as MSS 
(Maximum Segment Size), congestion control algorithms 
(Tahoe, Reno, etc.), or packet bit error rate in those built-in 
examples to compare performance among various 
configurations. For instance, it will be convenient to compare 
the changes in cwnd (congestion window) among different 
congestion control algorithms in those simulators. However, if 
students need to design experiments with specific traffic 
patterns, network topologies, or to collect statistics that are not 
currently recorded by existing experiments, they must 
implement these features by following the internal libraries in 
OMNeT++ or NS-3. This requires one to have a thorough 
understanding on the simulator internals, for instance, the 
representation of network elements (end node, switch, router), 
the logic and procedure used in the simulated sending and 
receiving, along with many simulator-private structures and 
interfaces which are not associated with network fundamentals 
nor with general socket library, therefore, it will create a steep 
learning curve that goes beyond the course requirements and 
puts extra burden on students in introductory networking 
courses. In general, these simulators are widely used in new 
network model and/or protocol development [13-16]. 

GNS3 (Graphical Network Simulator 3) [17] is a network 
emulator that virtualizes commercial network devices 
(especially Cisco routers) and allows one to configure, test, and 
troubleshoot networks in a virtual environment mirroring the 
actual network topology without requiring dedicated hardware. 
GNS3 has no relationships with NS-3 discussed previously 
though it is “Graphical NS3”. One can drag and drop network 
elements (hosts, switches, and routers) in GNS3 GUI to build 
and manage networks easily. Students who are preparing for 
CCNA (Cisco Certified Network Associate) certificate will gain 
the required in-depth knowledge [18] by using GNS3. It is also 
a great help for students to go over subnet fundamentals and 
management especially routing and switching topics because all 
network elements need to be configured manually in GNS3. For 
instance, one needs to set up IP and gateway addresses for all 
(virtual) hosts in GNS3, and to configure all routers by using 

actual router config commands to activate network connectivity 
among subnets (or to deny specific traffic between hosts). In 
addition, GNS3 allows one to capture traffic flows on every link 
in its virtual network, and in the real world however, it is not 
possible to see how data are transferred in external networks. 
This feature gives students opportunity to examine and study 
how packets are transferred among different subnets and how 
packet headers are altered from source to destination. However, 
GNS3 does not generate application layer traffic such as HTTP, 
FTP, nor does it provide ways for students to adjust protocol 
behavior or traffic patterns so that students cannot use it to 
explore details such as TCP error control, flow control, or 
congestion control. 

Packet Tracer simulator [19] is designed by Cisco, it has 
similar drag-and-drop GUI and provides similar functionalities 
like GNS3. One big difference between GNS3 and Packet 
Tracer is that Packet Tracer supports more application layer 
protocols such as HTTP, FTP, SMTP, etc. Besides, it visualizes 
traffic flows on every link in animation so that users can follow 
them step by step to learn protocol behaviors. However, as a 
simulator that implements protocol behaviors internally and 
only animates the procedure of data communications, it conceals 
too much of layer details and their relations to upper layers [20]. 
Although one can keep track of recorded packets and make 
connections among the packet sequence numbers and ACK 
numbers to follow the workflow in TCP data transfer, students 
cannot introduce any user-defined error models to learn how 
TCP recovers data in a lossy environment to guarantee 
reliability. In addition, as a “packet visualizer” that only records 
packet details, Packet Tracer does not interact with students to 
test their understanding, nor does it simulate essential 
mechanisms such as flow control or congestion control, 
therefore, it is not appropriate to study and investigate those TCP 
essentials in it. 

OPNET simulator [21] (OPNET IT Guru) provides a virtual 
network environment for modeling, analyzing, comparing, and 
predicting performance of IT infrastructures. Like GNS3 and 
Packet Tracer, one can drag-and-drop network elements in 
OPNET GUI and adjust traffic attributes such as traffic type 
(FTP, HTTP), repeatability, start/stop time, and data size in it. 
In addition, OPNET makes it easier to collect a great deal of 
network statistics, ranging from global statistics such as 
throughput and latency, to protocol level statistics such as cwnd. 
However, it does not illustrate traffic flows, nor does it provide 
ways to define specific network scenarios. Students cannot use 
it to investigate protocol details such as how error control 
handles various errors in data transfer to ensure reliability. 

Besides network simulators, several learning models [20, 
22-26] have been proposed to help students comprehend 
networking essentials in different ways while having 
programming requirements in their learning processes. 
However, those models either arrange students to work in a 
specific framework with pre-defined, model-private interfaces, 
or arrange students to deal with lower layer (Link Layer) 
implementations or driver implementations, which primarily 
deal with OS kernel internals such as driver callbacks, system 
calls and interruptions. These will put extra burden on students 
in introductory networking courses, and they cannot fully focus 
on the learning of network fundamentals. In our framework, 
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students are not limited in any specific context, and they have 
more opportunities to examine protocol/mechanism design 
details. In addition, students are engaged in the design of our 
framework and in the control of its behaviors. They can specify 
customized scenarios and enable/disable specific functionalities 
to follow network variations step by step and to learn things at 
their own pace. 

 

III. DESIGN AND DEPLOYMENT 
This section discusses the design details of our learning 

framework and its deployment in introductory networking 
classes. Our learning framework builds a Programmable, 
Interactive Environment (PIE) for practicing and investigating 
networking fundamentals, especially TCP essentials such as 
error control, flow control, congestion control, connection 
management, and state transitions. It consists of three modules: 
demonstration, interaction, and implementation. The 
demonstration module illustrates the details of TCP error control 
by using actual network traffic. It allows students to go beyond 
the predicted scenarios in common simulators, which typically 
conceal too much of the underlying techniques and do not 
provide ways for students to investigate error control techniques. 
PIE allows students to introduce different error models step by 
step to investigate how TCP detects errors and recovers data in 
various scenarios so that students can learn those underlying 
techniques at their own pace, thus creating a personalized 
learning environment. 

The interaction module focuses on packet details, especially 
the sequence number, ACK number, and packet flags (PSH, 
ACK, SYN, etc.), which are crucial elements in TCP data 
transfer. This module is used to test students’ understanding of 
how TCP relies on those header fields to detect errors and 
perform retransmissions. During interactions, students must 
provide the correct values of those header fields at each step in 
a complete TCP communication: from connection setup to 
connection close, and the module will provide feedback/hints in 
case there is any error in student response. In addition, because 
the state transition topic is usually discussed theoretically 
without any experiment or practice in networking classes, this 
module integrates TCP states in each step to help students gain 
in-depth knowledge of those abstract concepts. 

The implementation module focuses on flow control and 
congestion control mechanisms, which are not fully 
implemented (the “TBD” component in Figure 1 which will be 
discussed next). Students should design and implement them in 
PIE based on those mechanism principles. In this module, 
students must: 1) make sure that the sender will not overflow the 
receiver’s limited receive window; 2) record and adjust the cwnd 
appropriately according to different network events. 

PIE can be running in two modes: GUI mode and command 
line (cmd) mode. The architecture of the GUI-PIE is depicted in 
Figure 1 (the internal components will be discussed in the 
following subsections). GUI-PIE is built on top of JDK (Java 
Development Kit) and uses the Java Socket to generate actual 
network traffic. Therefore, unlike existing learning models that 
arrange students to program in specific frameworks or follow 
specific interfaces, no extra burden is introduced to students 

when they implement new functionalities or adjust existing ones 
in PIE. One can run the GUI-PIE in either C/S mode (on two 
hosts, one host is the server, sending side, and the other is client, 
receiving side) or standalone mode. The GUI-PIE does not rely 
on any specific OS features, and is an OS independent, portable 
tool for PCs (Windows, Linux, and Mac). 

 
Figure 1: The Architecture of GUI-PIE 

In our framework, the GUI-PIE is separated from the cmd-
PIE, which is running on Linux terminal only. Like GUI-PIE, 
the cmd-PIE can also be running in C/S mode or standalone 
mode. Unlike GUI-PIE, the cmd-PIE is written entirely in C 
programming language and uses the POSIX socket. The reason 
we provide the cmd-PIE is that students can realize the 
differences among various socket interfaces, especially the 
differences in recv operation between the POSIX socket and the 
Java socket and stream classes from application designers’ 
perspective. Students can work in one mode or both to learn 
network essentials depending on their needs. 
 

A. Demonstration Module 
This module focuses on the TCP error control mechanism, 

especially the acknowledgement and retransmission techniques 
in it. We do not explicitly illustrate checksum technique used in 
error control because the transmission errors (detected by 
checksum) can be covered by the error model (discussed next) 
we introduced in PIE. The demonstration module uses detailed 
illustrations to help students obtain a deep understanding of how 
packets are delivered reliably in lossy environments, for 
instance, how does receiver detect packet loss, how does sender 
realize which packet it sent previously has problem, and when a 
retransmission is necessary. 

Students first specify the total size of the sending data and 
the size of MTU (Max Transmission Unit), then the sender 
(send/recv component in Figure 1) starts sending data packets to 
the receiver. The event recorder component (shown in Figure 1) 
records all network events, such as a reception of a packet 
(data/ACK) and all error cases (discussed next) on both sides. 
Then the visualizer component displays those event logs in the 
GUI-PIE (in cmd-PIE, they will be displayed as live traffic logs). 
The send/recv component is built by using TCP socket, so that 
the PIE, which resides in the application layer, will not observe 
any error situations, for instance, packet loss or RTO 
(Retransmission TimeOut). In order to provide students with 
error models in which they can investigate how TCP reacts to 
various network scenarios to guarantee reliability, we introduce 
the following two mechanisms: 
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1) Explcite ACK: after receiving a data packet in PIE, an 
explicit ACK packet should be constructed and sent to 
acknowledge the reception of a data packet. It should convey 
the following simulated information: sequence number, ACK 
number, and necessary flags, as shown in Figure 2, which is 
also the data packet format used in PIE. 

 
Figure 2: Packet Format in PIE 

2) Random packet discarder component (as shown in 
Figure 1): it is introduced to simulate packet loss, depending on 
a configurable “loss rate” parameter. That is, after receiving a 
data packet, the receiver runs the random packet discarder to 
decide whether the current packet should be discarded 
“manually” as if it was not received previously. On the sender 
side, after receiving an ACK, it runs the discarder to decide 
whether to discard the explicit ACK manually. Therefore, 
unlike the existing simulators/animations that generate 
predicted traffic patterns, the random packet discarder in PIE 
will generate various error scenarios for students to investigate 
TCP error control techniques in detail. In addition, the discarder 
can also be configured to build predicted error scenarios. 
Students can specify a list of packets in the discarder to only 
discard those packets, thus building a predicted environment for 
beginners to learn as needed. 

The reasons we use the combination of TCP socket and a 
random packet discarder, instead of implementing those 
features by using UDP, are: 

1) students will have control on the introduced error models, 
and they can simply adjust the value of the “loss rate” attribute 
to compare and examine various situations; 

2) it will be easier to calculate the goodput measurement 
since the number of delivered packets will be known for sure; 

3) this simulation model is extensible and will match 
students’ learning curve if built on TCP. For instance, when 
students start with the basic concepts in data transfer, the packet 
discarder can be disabled so that students can get familiar with 
the overall procedure in the ideal situation; then, the discarder 
can be introduced to receiver side only so that students can focus 
on how sender detects packet loss and deals with retransmission 
based on the retransmission timer or fast retransmission 
technique; finally, the discarder can be introduced to sender to 
simulate lost ACK scenarios. This step-by-step process creates 
a personalized learning environment in which students can 
learn essential error control techniques at their own pace. 

 As stated before, all network events, including the 
“simulated” packet loss, duplicated ACKs, and retransmissions, 
will be recorded and visualized. Figure 3, for instance, displays 
events recorded on sender side in a network environment in 
which the discarder is introduced to receiver only. Each event 
has relevant description and is self-explained. Note that the 

discarder can be introduced to both sides and packets will be 
discarded randomly, therefore, each time the demonstration 
module runs in a “new” lossy environment and will generate a 
new set of events accordingly. 

 
Figure 3: an Example of Recorded Events in the Demonstration Module 

 It seems that the demonstration module is similar to the 
packet sniffing tools such as Wireshark analyzer, which captures 
packet payload and packet header fields such as sequence 
numbers, packet lengths, and packet types. However, in the real 
world, it is not easy to let network discard a specific packet in 
TCP to customize a lossy environment, therefore, tools like 
Wireshark will not illustrate the gaps in sequence numbers 
and/or duplicated ACKs. But in the demonstration module, 
students can easily specify different lossy environments and go 
through those events to practice the error control techniques 
such as how receiver detects packet loss, how sender becomes 
aware of a problematic packet, and when a retransmission is 
necessary. 
 

B. Interaction Module 
 This module provides an event-driven interaction for 
students to learn and practice the mechanisms used in TCP error 
control to detect error situations such as lost packets, out-of-
order packets, duplicated packets, etc. It also provides students 
with practice in TCP state transition. The interaction module 
simulates the entire data transfer procedure (from connection 
setup to connection close) and records all network events, like 
the demonstration module. Then it uses those events one at a 
time to interact with students and to test their understanding of 
how packet header fields are used to acknowledge data reception 
and to detect errors. First, students choose one side (data packet 
sending side or receiving side) to begin the interaction. Because 
different sides have different events, students can get involved 
in every detail of error control. In each step, students respond to 
the current event and construct a packet with appropriate values 
for the packet sequence number, the ACK number, and the 
packet flag (SYN, ACK, FIN, etc.) in order to move to the next 
event. Figure 4 illustrates the situation when one host receives a 
data packet with sequence number 1, ACK number 1, and 
payload length 1460 bytes. Students should construct an explicit 
ACK packet with the correct ACK number, sequence number, 
and choose the appropriate packet flag (ACK) to acknowledge 
the reception. Then, it moves to the next network event, as 
shown in Figure 5, the host receives a data packet with sequence 
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number 2921, students can then deduce that a packet may get 
lost due to the gap in the sequence numbers, then students should 
provide the appropriate ACK number for the current event. 

 
Figure 4: an Example of Constructing an explicit ACK packet 

 

 
Figure 5: an Example of Constructing an explicit ACK packet when gap exists 
 The interaction module provides a self-directive and self-
explanatory interface. If any value students provide is not 
correct, the module reports error information and hints on how 
to fix it. For instance, if one mistakenly provides ACK number 
4381 in the step shown in Figure 5, then the interactive module 
will report this unaccepted ACK error, in Figure 6, and go back 
to the previous event (Figure 5), waiting for the correct input 
values to move to the next event. 

 
Figure 6: Hints for Students if any Value is not correct 

 The random packet discarder is also used in this interaction 
module. Based on their learning needs and individual progress, 
students can introduce the discarder on either side step by step 
to investigate and practice the variations in protocol behaviors 
because each time PIE runs, it generates a different set of 
network events. Another way to use the discarder, as discussed 
previously, is that students can specify a list of discarded packets 
(discussed in the demonstration module) to build a predictable 
environment that only discards “pre-defined” packets, thus 
creating a personalized learning environment. Initially, the 
discarder is disabled so that no packets get dropped. In this 

“ideal” scenario, beginners can go over the basic work flow 
between data packets and ACK packets. Then, the discarder can 
be introduced on the receiver side only to simulate data packet 
loss, so that gaps between data packets will appear (for instance, 
Figure 4 and Figure 5). In this case, students, if working on 
receiver side, need to acknowledge data packets with 
“appropriate” ACK numbers. If they are working on sender side, 
they need to deal with events such as duplicated ACKs and 
retransmission scenarios. Next, the discarder can be introduced 
to the sender side to simulate ACK loss scenarios, which will 
generate more variations. Therefore, instead of observing 
protocol behaviors, students have opportunities to delve into the 
details of error control systematically in this module, and they 
can proceed from simple cases to complex scenarios in 
accordance with the structure of their knowledge. This helps 
students obtain a deep understanding of how TCP relies on 
packet header information and timer to guarantee reliability. 

 
Figure 7: an Example of TCP State Transition 

 In addition, the interaction module integrates TCP state 
transition procedure, which is usually discussed theoretically in 
classes without any experiment or practice, so that students are 
generally not aware of how important it is to TCP 
communication. Similar transition ideas are applied in other 
networks, for instance in the RDMA QP (Queue Pair) transition 
[2]. In each of the interaction steps, especially in the connection 
setup and connection close, students not only need to provide 
appropriate values for sequence number, ACK number, and flag, 
but also need to change the current state, if necessary, to the next 
appropriate one. For instance, upon the reception of a SYN 
packet, as shown in Figure 7, one should construct a SYN+ACK 
packet to accept the connection request and move local state to 
SYN_RCVD. 

 

C. Implementation Module 
Students should implement flow control and congestion 

control mechanisms in this module. In general, these two topics 
are discussed without hands-on practice in classes, usually 
diagrams or animations are used to illustrate how they work. In 
simulators like OMNeT++ or OPNET, rwnd (receive window) 
and cwnd (congestion window) statistics are collected 
automatically so that users can compare how these windows 
change over time in various configurations. However, those 
tools only visualize the window changes and do not illustrate the 
internal principles. It will be better for students to implement 
these mechanisms in a simple way to understand how to adjust 
those windows in response to various scenarios. 
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In the “TBD” component (Figure 1), part of the sending and 
receiving structure is implemented. Students should continue to 
use socket and the packet format shown in Figure 2 (a new filed 
“window” should be added if it is flow control implementation) 
to implement flow control and congestion control separately. 

In the flow control implementation, sender has knowledge 
of the initial rwnd from a pre-defined, configurable variable 
“window size” (N bytes), and it keeps sending several packets 
with random size (1 ~ N-1 bytes) of data (students can choose to 
always send fixed length of data) as long as the window size on 
the sender side is not 0. If it is the cmd-PIE framework, a simple-
TLV (Type-Length-Value) protocol we modified for this 
framework is used. That is, before sending a data packet with 
size M bytes (M < N), sender should send a (control) packet first 
that contains the information of M to indicate the size of the data 
packet sender goes to send next, so that the receiver 
(implemented in C program) can call recv function with 
appropriate buffer size to hold the next data packet in order to 
preserve packet boundary for easy management. 

 
Figure 8: an rwnd Scenario 

On data packet receiver side, it randomly decides whether to 
consume zero, one, or X data packets (X is less than the number 
of packets received but not consumed), and then sends an 
explicit ACK packet with its current window size integrated. For 
instance, in the scenario shown in Figure 8, students must make 
sure that sender should not send any data packets upon reception 
of the explicit ACK. 

The partially finished TBD component is implemented in 
single thread mode. We encourage students to implement flow 
control in multi-thread mode (for instance in Figure 9) to handle 
synchronization in multi-thread environment, in which more 
situations should be considered. This will help students fully 
understand the underlying flow control mechanism and gain 
better programming skills. In flow control implementation, the 
random packet discarder is not used. 

 
Figure 9: one Possible Flow Control Model in Multi-thread Mode 

In congestion control implementation, the sliding window 
size discussed in the demonstration module should start from 1 
(initial slow start window size) MSS, and it should be adjusted 
appropriately based on different network events according to 
congestion control algorithm students implement. We suggest 
students to use random packet discarder (with low drop rate) on 
the receiver side only to discard data packets randomly. Sender, 
in this case, does not discard any explicit ACKs in order to focus 
on the events of packet loss, duplicate ACKs, and RTO. 

Students should collect statistics such as the changes in 
rwnd, cwnd, and the number of bytes consumed each time on 
receiver side in their implementations. They should also adjust 
attributes such as window size, traffic pattern (e.g. always send 
fixed length of data), and consumption style (e.g. consume a 
packet after a fixed small delay) to simulate various scenarios 
and compare throughput among those configurations. Based on 
the data they collected, students should then diagram and 
investigate the entire procedure of how the changes in those 
attributes impact receive window and congestion window. 

 

IV. RESULTS 
We use the PIE learning framework in an introductory 

networking course at undergraduate level with the objective of 
helping students comprehend the core techniques in the 
transport layer and engaging them in effective learning. The 
framework lets students analyze protocol essentials in detail, 
construct models, and evaluate their ideas by experimenting and 
testing with actual network traffic. We expect students to learn 
what went wrong and how to fix them in the procedure and to 
develop higher-order thinking skills [27] that can transit them 
from “I can follow rules to describe a procedure, but I do not 
know how to connect them together” to “I can explain why 
things happened in this way, and I can apply my ideas and 
compare different designs”. 

TABLE I: Test Topics and Objectives 
 Topics Objective (test how well students 

understand…) 

test 1 
acknowledgement 
and retransmission 
mechanisms 

how TCP detects packet loss and 
ensures reliability in various 
scenarios 

test 2 
connection setup 
and close, state 
transitions 

1) when a state is moved to another 

2) how state transition reacts to 
header flags 

3) the changes in header fields during 
a complete communication 

4) the information sender and 
receiver exchange during connection 
setup 

test 3 
flow control (fc), 
sliding window, 
receive window 

1) how to adjust sliding window 

2) how fc is used to pause a sender 

test 4 
congestion control 

(cc) 

1) how to adjust cwnd according to 
different events 

2) how cc impacts throughput 
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 For each networking technique illustrated in our framework, 
we give two tests in a stepwise learning process. Table I shows 
the test topics and objectives. We first take a test after lecture 
and practice in network simulators and/or animations, 
depending on the topics we discussed, then, students work in the 
framework, and after that, we give another test on the same topic 
but with more advanced questions. Finally, we grade these tests 
and review student progress. Figure 10 shows the comparison of 
their grades before and after participating in the learning 
framework. 

 
Figure 10: Student Assessment before and after Participating in each test 

In error control, which deals with techniques such as 
sequence number, ACK, and retransmission, students gain 
significant improvements after learning in the framework 
because the techniques TCP uses to guarantee reliability are too 
abstract when they were discussed in classes by using diagrams 
or animation examples. Although existing simulators allow 
users to configure parameters such as packet loss rate to specify 
a lossy environment, how data are delivered reliably is still 
transparent to students. Our learning framework not only 
provides multiple ways for students to investigate core 
techniques in detail, but also creates a personalized learning 
environment in which they can learn things at their own pace. 
Similar improvement occurs in flow control, connection 
management, and state transition activities. In congestion 
control activity, students already did well in the first round 
because their understanding of the fundamentals is improved in 
the previous activities. 
TABLE II: Percentage of Students who made Common Errors before and after 

learning in PIE 
Common Errors Before After 

ACK number does not reflect expected seq.no 29% 7% 

incorrect seq.no 12% 0% 

incorrect ACK number in case of packet loss 31% 3% 

does not consider cumulative ACK 22% 3% 

move sliding window incorrectly 26% 10% 

sender overflows receiver’s window 19% 6% 

 Table II summarizes and lists the percentage of students who 
makes common errors before and after their learning in PIE. It 
indicates that students have shown remarkable progress in all 
aspects. This confirms that students have gained better 

comprehension of those core techniques, and have developed 
well-organized, structured knowledge after their learning 
activities in the framework. 

 
Figure 11: Student Evaluations on PIE 

 Students were asked to evaluate the framework from several 
aspects. Figure 11 shows their overall evaluation (1 means 
“strongly disagree”; 5 means “strongly agree”). They have 
identified that the interaction module is their most favorite part, 
which directs them step by step to complete a data transfer 
procedure, especially when they make mistakes the module 
provides hints to help them learn header details and state 
transition. Figure 12 lists the time they spent on the 
implementation part. Most students can finish the coding 
activity within 10 days, and based on our observation, this 
programming project does not cause any time conflict with other 
networking assignments handed out at the same time. We plan 
to let students implement more details in flow control and 
congestion control in the future. 

 
Figure 12: Time Students Spend on Mechanism Implementation 

 

V. CONCLUSION 
This paper introduces an educational framework for 

effective learning of TCP essentials such as error control, flow 
control, congestion control, connection management, and state 
transitions. A good understanding of these core techniques not 
only helps students comprehend the architecture and internal 
principles of network communication, but also prepares students 
for advanced topics and skills because these techniques have 
significant effect on the design of other network protocols and 
mechanisms. There are three modules in our framework: 
demonstration, interaction, and implementation. The 
demonstration module illustrates the details of error control by 



8 COMPUTERS IN EDUCATION JOURNAL, VOLUME 10, ISSUE 3, September 2019 

using actual network traffic and allows students to investigate 
how TCP detects errors and recovers data to guarantee reliability 
in configurable lossy environments. The interaction module 
focuses on the learning and practicing of packet header details 
and state transitions. Its self-directive GUI interacts with 
students through entire TCP communication procedures: from 
connection setup, data transfer, to connection close. In each 
interactive step, students need to construct a packet with 
appropriate values in the header fields and move the current TCP 
state to the next appropriate one. The interface can detect errors 
in student response and provide hints on how to fix them. In the 
implementation module, students use socket programming 
model to implement TCP flow control and congestion control. 
This program project will help students obtain a deep 
understanding of when and how to adjust transfer windows 
appropriately in response to various network events. 

One important feature provided by our framework is that 
students can learn network fundamentals at their own pace. The 
framework uses actual network traffic in user-defined lossy 
environments, it allows students to introduce various error 
models step by step to investigate how TCP reacts to different 
situations. For instance, students can start from the ideal 
environment in which the lossy model is disabled in order to get 
familiar with the basic work flow. Then, various lossy models 
can be introduced to the receiver side only in order to focus on 
the details of how sender detects packet loss and when a 
retransmission is necessary. Next, lossy models can be activated 
on sender side to generate more network events, thus creating a 
personalized learning environment in which students can 
configure the framework as needed and learn things at their own 
pace. 

 According to our observation, this framework can be used 
not only in classrooms to demonstrate essential mechanisms in 
various scenarios, but also in labs or after class to provide 
programming projects and hands-on practices to enhance 
effective learning and encourage personalized learning. 
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