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Abstract 

Linear transformations mapping R3 to R3 will 

be considered. The computer algebra system 

Maple will be used to demonstrate what 

happens to a vector in R3 when it is transformed 

by the linear transformation. A procedure was 

created in Maple to graph both the unit sphere 

and the figure that results when vectors of 

length one are multiplied by a 3 x 3 matrix. The 

resulting figures are used to visualize important 

concepts in linear algebra. The condition 

number of a matrix is introduced to explain 

potentially confusing figures. 

 

When students think of linear transformations, 

they usually think in terms of matrices and their 

corresponding pivots, rows, and columns. The 

best way for students to understand linear 

transformations is by having them actually see 

what happens when vectors are multiplied by 

matrices. The method presented in this paper 

allows students to comprehend what is really 

happening to vectors when they are 

transformed. While other software packages 

allow the presentation of similar results, the use 

of Maple encourages the advanced student to 

create procedures that illustrate other 

mathematical properties. 

 

In this paper, linear transformations mapping 

R3 to R3 will be considered. Maple will be used 

to demonstrate what happens to a vector in R3 

when it is transformed by the linear 

transformation T. Certainly it not possible to 

demonstrate what happens to every three 

dimensional vector under a linear 

transformation. However, that is unnecessary. 

It is sufficient to demonstrate what happens to 

vectors of length one. Suppose that ||v|| 

represents the length of the nonzero vector v. 

Then v/||v|| is a vector of length one and T(v) = 

T(||v||*v/||v||).  But since T is linear,  T(v) = 

||v||*T(v/||v||). So if the student knows what 

T(v/||v||) looks like, that student also knows that 

T(v) is just a positive constant multiple of it. 

Thus, T(v) is simply a stretching or shrinking of 

T(v/||v||). 

Every transformation from R3 to R3 can be 

represented by a 3x3 matrix. A procedure was 

created in Maple to graph both the unit sphere 

and the figure that results when vectors of 

length one are multiplied by a 3 x 3 matrix. 

Since the transformation is linear, the 0 vector 

maps to the 0 vector. Since the vector 0 is not 

on the unit sphere, the fact that T(0)=0 will not 

be represented. For every other nonzero vector, 

division by ||v|| puts v/||v|| on the unit sphere. 

The transformation of this corresponding unit 

vector will be represented on the resulting 

graph. Both the LinearAlgebra and the plots 

libraries are used in the following code. The 

procedure that creates the two figures follows. 

 
> sphere:=proc(A); 

> 

P1:=Matrix([[sin(x)*cos(y)],[sin 

(x)*sin(y)],[cos(x)]]): 

> 

P2:=MatrixMatrixMultiply(A,P1): 

> 

P1:=convert(convert(P1,vector),l 

ist): 

> 

P2:=convert(convert(P2,vector),l 

ist): 

> 

g1:=plot3d(P1,x=0..Pi,y=0..2*Pi, 

style=PATCH,color=black,scaling= 

CONSTRAINED): 

> 

g2:=plot3d(P2,x=0..Pi,y=0..2*Pi, 

style=WIREFRAME,color=black,thic 
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kness=1,axes=normal,scaling=CONS 

TRAINED); 

> display3d({g1,g2}); 
> end: 
 

Consider a transformation T(x, y, z) = (4x + y 

+ z, x + 3y + z, x + y + 2z). The matrix 

associated with this transformation is: 

 
> 

A:=Matrix([[4,1,1],[1,3,1],[1,1, 

2]]); 

é 4 1 1ù 
ê ú 

A := ê 1 3 1ú 
ê ú 
ê ú 
ë 1 1 2û 

Consider what happens when the points on the 

unit sphere are multiplied by this matrix. In 

vectors on the unit sphere get mapped to the 

zero vector. Since the nullspace consists of just 

the zero vector, the nullity must be 0. The range 

of the transformation is a space with dimension 

three. Thus, the rank is three. Each point on the 

ellipsoid comes from only one point on the 

sphere. The mapping is one-to-one and it maps 

R3 onto R3. Therefore, the matrix must have an 

inverse. 

 

Now consider the linear transformation T(x, 

y, z) = (2x + y + 2z, 3x + 3y + 3z, x + 2y + z). 

The matrix associated with this transformation 

is: 

 
>  
B:=Matrix([[2,1,2],[3,3,3],[1,2, 

1]]); 

é 2 1 2ù 
each of the following figures, the unit sphere is ê ú 

represented by the black sphere and the 

transformed sphere is represented by the second 

shape. 

B := ê 3 3 3ú 
ê ú 
ê ú 
ë 1 2 1û 

 

 

Figure 1. 

 

Students see that the sphere has been 

transformed into an ellipsoid. Consider this 

linear transformation. The students can rotate 

the above graph to analyze it from all different 

viewpoints. Students very quickly begin to 

make correct conjectures about the way that 

such a transformation behaves. For example, no 

Consider what happens when the points on the 

unit sphere are multiplied by this matrix. 
 

Figure 2. 

 

Different views of the resulting graph are 

necessary in order to understand what is 

happening here. In Figure II, it looks as though 

the sphere has been transformed into a line. 

However, a different view in Figure III shows 

that the sphere has really been transformed into 

an ellipse and its interior. 
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Figure 3. 

 

Consider this second linear transformation. 

By analyzing the above figures, students can see 

that the rank of the matrix is the same as the 

dimension of the range. They are looking at a 

figure with dimension two when they look at the 

range. Since one dimension was lost during the 

transformation, the nullspace cannot include 

only the zero vector. Students see that nonzero 

vectors have mapped to the zero vector. The 

dimension of the nullspace has to be one since 

the dimension of the range is two. 

 

Now consider a transformation T(x, y, z) = (x 
+ y + z, 2x + 2y + 2z, 1/2 x +1/2y + 1/2 z). The 

matrix associated with this transformation is: 

 
>  
C:=Matrix([[1,1,1],[2,2,2],[1/2, 

1/2,1/2]]); 

é 1 1 1ù 

Figure 4. 

Consider this third linear transformation. 

Different views of the above figure yield 

virtually the same figure. By analyzing it, 

students can see that the rank of the matrix is 

one and that the dimension of the nullspace is 

two. The theorem stating that the dimension of 

the original space equals the dimension of the 

range plus the dimension of the nullspace finally 

makes sense. They realize that such a 

transformation cannot be invertible, and can see 

the relationship between the concept of a one- 

to-one mapping and the invertibility of the 

transformation. 

 

Unfortunately, there can be problems with 

such  an  analysis. Some nonsingular 

transformations actually look singular when 

using this geometric approach. This occurs 

when some of the unit vectors are sent a large 

distance away from the sphere while others are 

sent a very small distance away. The result is a 

transformed sphere that looks like a plane or a 

line but that is actually a long, thin ellipsoid. As 

a result, an analysis of the graph associated with 

a particular linear transformation is not 

complete without an understanding of the 

condition number of the corresponding matrix. 

 
The condition number of a matrix measures ê ú 

the relationship between the maximum 
C := 

ê 2 2 2ú 
ê ú 
ê ú 
ê 1 1 1ú 
ê   ú 
ë û 

 

Consider what happens when the points on the 

unit sphere are multiplied by this matrix. 

stretching and the maximum shrinking (or the 

minimum stretching if no shrinking occurs) of 

the vectors on the unit sphere. The maximum 

stretching is the distance from the origin to the 

point on the ellipsoid farthest away. The 

maximum shrinking is the distance from the 

origin to the point on the ellipsoid which is 

closest. The condition number is the quotient of 

the maximum stretching  and  the  maximum 
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shrinking. If the maximum stretching is large 

and the maximum shrinking is small, the 

ellipsoid will be long and thin. The result will 

be a very large condition number. If the matrix 

is singular, some points on the unit sphere will 

be mapped to zero. As a result, maximum 

shrinking will be 0 and the condition number 

will be undefined. 

 

The condition number also measures the 

sensitivity of the matrix to small changes in its 

entries. That is, it reflects the degree to which 

the solution of a system of equations is altered 

by small changes in the matrix. A large 

condition number corresponds to a matrix which 

is sensitive to small changes. Vectors that are 

close together can get mapped to vectors that are 

very far apart. Such a matrix is called ill- 

conditioned. A small condition number 

corresponds to a matrix which is not sensitive to 

small changes. Vectors that are close together 

are mapped to vectors that are relatively close. 

Such a matrix is called well-conditioned. 

Graphically, an ill-conditioned matrix 

transforms the sphere into an ellipsoid, however, 

the ellipsoid is so thin that from one particular 

view, it looks more like a line. An 

understanding of the concept of condition 

number is very important in order that students 

understand what is happening in the following 

example. Note that the vector [1, 1, 1] is a 

solution of the following system of equations. 

x + 2y + z = 4 

2x + 4.0001 y + 2.002 z = 8.0021 

x + 2.002 y + 2.004 z = 5.006 

 

Suppose that slight round off error occurs in 

some measurements and the following system is 

used in place of the above system. 

 

x + 2y + z = 4 

2x + 4.0001 y + 2.002 z = 8.002 

x + 2.002 y + 2.004 z = 5.006 

It would seem that with such small changes, 

the new solution will still be close to the 

previous solution of [1, 1, 1]. However, the 

approximate solution of the second system of 

equations is [3.085, -0.044, 1.002]. The reason 

for this discrepancy is found in the fact that the 

condition number of the coefficient matrix 

associated with this system of equations is 

499558.1867. Such a condition number is huge. 

Consider the graph of the unit sphere and the 

transformed sphere. 
 

 

Figure 5. 

 

While the coefficient matrix of this 

transformation has an inverse, Figure V reveals 

a graph that looks as though a singular matrix 

has been used. Even though no dimensions 

have been lost, vectors close together have been 

transformed to vectors so far apart that even a 

slight change in the values of b result in drastic 

changes in the solutions of the matrix equation 

Ax=b. The coefficient matrix is an ill- 

conditioned matrix. It acts more like a singular 

matrix than a nonsingular matrix. The graph 

reveals why this is true. 
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Classroom Use 
 

  

Effective labs can be created using the 

graphing capabilities of Maple. An example of 

part of a very success lab follows. Before the 

lab is assigned in class, students would have 

been sent a copy of the lab through the 

classroom management system Blackboard. 

This would include the procedure “sphere” 

detailed above and at this point in the class, they 

understand that they must enter the procedure 

and load the appropriate libraries. 

Lab #10: Visualizing Linear Transformations 

 

1. Let A be the given matrix. 
 

 

 

a. What is a basis for the column space of A? 

b. What is the range of the linear 

transformation associated with A? 

c. What is a basis for the nullspace of A? 

d. What is the nullspace? 

e. What is the rank? 

f. What is the nullity? 

Note: To actually see the unit sphere and the 

transformed sphere, the code is: sphere(A); 

g. What does the transformed sphere look 

like? How many dimensions are there in the 

transformed sphere? Explain in terms of rank 

and nullity. 

2. Let B be the given matrix. 
 

 

 

Answer a - g above. 

h.  Now find the eigenvectors and eigenvalues. 

The code is: eigenvects(B); 

i. Explain what happens when you have an 

eigenvalue of 0. 

 

3. Now consider matrix C. PLEASE DO 

THESE QUESTIONS IN ORDER. 

 

   

a. Plot the sphere and transformed sphere. 

b. Before you put the matrix in row reduced 

eschelon form, and judging just from the 

plot, do you think that you lost a dimension? 

That is, does the resulting plot look more 

like that of matrix A or B? 

c. Now find the row reduced eschelon form of 

the matrix. Are you surprised? 

d. Now find the eigenvalues and corresponding 

eigenvectors. Explain the plot using the 

eigenvalues. 

 

Student reactions 

The overwhelming reaction to this lab was 

one of surprise. As a whole, the students were 

positive that the row reduced eschelon form of 

matrix C would reveal one row of zeros. When 

this was not the case, many students thought 

that they must have made a mistake. The vast 

majority of students were interested in why the 

graph looked the way it did. They were able to 

explain the resulting graph when they found that 

one eigenvalue was very small compared to the 

other eigenvalues. They really liked the fact 

that they had been surprised. They liked it even 

more when they could easily figure out why this 

happened. In general, students who like using a 

computer algebra system in class are also the 

students who feel that it is introduced 

satisfactorily and is interwoven with the course. 

Successful labs typically allow the student to 

see a connection between what is being done in 

the lab and the material covered on tests. While 

using a computer algebra system, most students 

are empowered by their ability to tackle harder 

problems, visualize something interesting, and 

be freed from tedious calculations. 
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Conclusion 

The computer algebra system Maple is being 

used effectively in the linear algebra class. This 

paper demonstrated how Maple can be used to 

help students better understand the fundamental 

concept of linear transformations. A graphical 

approach crystallizes many of the ideas that are 

fundamental to an understanding of linear 

algebra. It does not relegate linear 

transformations to a list of supplementary topics 

covered if there is time left at the end of the 

semester. It allows matrix theory to be seen as a 

tool necessary to understand linear 

transformations. Students exposed to this 

graphical presentation rarely speak about linear 

transformations in terms of the corresponding 

matrix. Rather, they speak in terms of the what 

shape the transformed sphere has taken. Very 

simply, they understand what the word 

"transformation" means because they have seen 

what a transformation does. 
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